
decoding socio-technical complexity

Software development of an Agent-based Model-driven Integrated Environment

Name: Sidney Niccolson
Topic: ICT, Agent-based Modeling and Simulation, Socio-Technical Systems
Date: February 6th, 2017
Field: Industrial Ecology
1st supervisor: Dr. Amineh Ghorbani (TU Delft)
2nd supervisor: Dr. Virginia Dignum (TU Delft)

Sidney Niccolson
Thesis Research Project
February 6th, 2017
s1650548 (Leiden) - 4452909 (Delft)

decoding socio-technical complexity
Software development of an Agent-based Model-driven Integrated Environment

Full Name : Sidney Iwan Niccolson
Mail : sidneyniccolson@gmail.com
University : Leiden University and Delft University Of Technology
Field : Industrial Ecology
Background : Bio-informatics
Thesis Project timespan : September 13th – February 6th
Student number : s1650548 (Leiden) - 4452909 (Delft)

Host institution : Delft University Of Technology
Name supervisors : Dr. Amineh Ghorbani and Dr. Virginia Dignum
Name of contact* : Dr. Amineh Ghorbani
Department : Engineering Systems and Services (Section: Energy and Industry)
Address : Faculty of Technology, Policy and Management, Building 31
Room : A3.200
City : Delft
Phone : +31 15 27 86703
Mail : A.Ghorbani@tudelft.nl

2

Sidney Niccolson
Thesis Research Project
February 6th, 2017
s1650548 (Leiden) - 4452909 (Delft)

Abstract
The need for life cycle system oriented tools has been stressed within the field of Industrial Ecology and has
become gradually more important due to the increasingly complex environmental challenges that our society
faces (Davis, Nikolic, & Dijkema, 2010; Halog & Manik, 2011). The present-day advancements in technology,
mainly Information Communication Technology, allows for many opportunities to improve our
understanding of complex systems. Agent-based Modeling and Simulation provides techniques to create a
computer representation of a system, thereby enabling researchers to simulate complex systems. Thus,
driving our comprehension of the anthropogenic influence on planet earth. More specifically, socio-technical
systems are inherently complex and the environmental impact on the world is in part due to the interaction
between individuals and technology, which has not been fully addressed. While Agent-based Modeling and
Simulation allows for the analyses of socio-technical systems, stakeholder involvement has proven to be a
barrier for modelers and scientist alike. This barrier comes forth out of the lack of programming experience
needed to utilize computational tools. Especially in the field of Agent-based Modeling and Simulation the
level of programming skills required to implement socio-technical models is relatively high. This study aims
to develop a decision support tool that lowers the barrier for the construction of socio-technical agent-based
models. The integrated environment provides means for model development, translation to simulations and
intercommunication through sharable models. The cross-platform decision support tool that utilizes the
MAIA (Modeling Agent systems based on Institutional Analysis) framework addresses the stakeholder
involvement challenge inherent in ABMS. The computational methodology presented here uses a Model-
driven Software Development approach to bring about the platform development.

3

Sidney Niccolson
Thesis Research Project
February 6th, 2017
s1650548 (Leiden) - 4452909 (Delft)

Acknowledgements
First and foremost I would like to thank my first supervisor, Amineh Ghorbani for the valuable structured
guidance and advise. Her work on the MAIA theoretical framework is very inspiring, MAIA presents an
approach on how we can use computational tools to improve our understanding of complex systems. The
personal meetings with her were motivating and essential for the development of the software. I learned a
considerable deal with respect to Model Driven Software Development and automatic code generation that
may prove valuable in my future career. Furthermore, I want to thank Virginia Dignum as a second
supervisor for her feedback and the inspirational work on the OperA framework. I also would like to take this
opportunity to thank Thorben Jensen for helping me at the start of this thesis study. His recommendations
encouraged me, and pointed me in the right directions. Tai Sassen Liang was the only software developer that
I had contact with from time to time and I want to give him an honorable mention. For understanding my
long evenings from time to time at the computer, I’d like to thank my girlfriend Vhernadette. Moreover,
special thanks to Michael for his support and the informal study group sessions we organized together.
Finally an honorable mention goes to my fellow IE students and friends, for their warmth and openness
which contributed to a strong cooperative study environment that I have never experienced before.

4

Sidney Niccolson
Thesis Research Project
February 6th, 2017
s1650548 (Leiden) - 4452909 (Delft)

Table of Contents
Abstract..3
Acknowledgements..4
Abbreviations...7
1 Introduction...8

1.1 Thesis goal and scope... 9
1.2 Thesis outline... 11

2 Materials and Methods..12
2.1 MAIA and ABMS... 12

2.1.1 Modeling and simulating socio-technical systems..12
2.1.2 Conceptualization – how to go from theory to a description of a system's behavior?..13
2.1.3 The MAIA meta-model...14

2.2 Model Driven Software Development.. 15
2.3 Java and object oriented programming... 16
2.4 Eclipse.. 17

2.4.1 Eclipse Modeling Framework (EMF)...18
2.4.2 Java Emitter Templates (JET)...19
2.4.3 Eclipse Rich Client Platform (RCP)...19

3 Model-driven software development for ABMS...20
3.1 The application development approach... 20
3.2 Model development infrastructure – EMF processes.. 21
3.3 Transformation platform infrastructure – JET processes..23

4 AMIE - Agent-based Model-driven Integrated Environment...26
4.1 Software Architecture.. 26
4.2 Software functionality.. 28

4.2.1 Procedural semantics..30
4.2.2 Error handling..32

5 Case study...33
5.1 An introduction to the case study.. 33
5.2 Conceptual MAIA-model development: MAIA structures applied..34
5.3 Simulation implementation details.. 39
5.4 Simulation results.. 43

6 Tutorial for AMIE test-users...46
7 Discussion and Conclusion...54

7.1 Overview.. 54
7.2 Research Outcomes.. 54

7.2.1 Research question 2 [components]..54
7.2.2 Research question 3 [connection of components - workflow]...55
7.2.3 Research question 4 [conceptual models towards simulations]...55
7.2.4 research question 1 [AMIE]...55

7.3 Contribution of the thesis study.. 55
7.3.1 Participatory ABMS..55
7.3.2 Scientific contribution..56
7.3.3 Societal contribution..57

7.4 Reflection and future research... 57
7.4.1 Technical limitations..57
7.4.2 Use of run-time visualizations...58
7.4.3 Comprehensive software evaluation and validation..59
7.4.4 More advanced GUI for model editing..59
7.4.5 Code generation for other platforms...60
7.4.6 Model extension proposals...60

Glossary: An introduction to IE...63
Triple Bottom Line and Sustainable Development.. 64
Life Cycle Thinking.. 64
Circular Economy and Closed-loop Supply Chains... 64
Industrial Symbiosis.. 65

5

Sidney Niccolson
Thesis Research Project
February 6th, 2017
s1650548 (Leiden) - 4452909 (Delft)

Rebound effect... 65
Ripple effect... 65
Relevance of Information Communication Technology (ICT) to IE..66

Appendix 1: An overview of EMF...67
Appendix 2: JET Syntax..68
Appendix 3: Eclipse RCP..69
Appendix 4: MAIA Concepts & ABMS..70
Appendix 5: Platform Implementations of MAIA Concepts...73
Appendix 6: Development MAIA-based RCP...78

Common errors:.. 79
Creation of wizards and sending additional files:..80
Adding files to root directory of RCP app.. 82
Create output for potential error messages and error prevention on Windows..82
Default plotting mechanism library.. 82
Important Java classes... 82

Appendix 7: Entity actions in detail...84
An introduction to entity actions.. 84
Scenario 1 Entity Actions Explained... 86
Scenario 2 Entity Actions Explained... 89
Scenario 3 Entity Actions Explained... 90

8 References...92

6

Sidney Niccolson
Thesis Research Project
February 6th, 2017
s1650548 (Leiden) - 4452909 (Delft)

Abbreviations
ABMS: Agent-based Modeling and Simulation
MDSD: Model-driven Software Development
MDA: Model Driven Architecture
IE: Industrial Ecology
STS: Socio-technical Systems
MAIA: Modeling Agent systems based on Institutional Analysis
JET: Java Emitter Templates
EMF: Eclipse Modeling Framework
RCP: Eclipse Rich Client Platform
CAS: Complex Adaptive Systems
OOP: Object oriented programming
API: Application Interface
GUI: Graphical User Interface
OS: Operating System
JDT: Java Development Tools
XML: Extensible Markup Language
UML: Unified Modeling Language
ICT: Information, Communication Technology

7

Sidney Niccolson
Thesis Research Project
February 6th, 2017
s1650548 (Leiden) - 4452909 (Delft)

1 Introduction
Industrial Ecology (IE) emerged from the need to address the growing anthropogenic impact on the
environment. It aims to reduce environmental burdens related to energy and material flows (Allenby &
Graedel, 1993). Thereby IE takes a systems approach of assessing these flows. For instance assessing the total
material life cycle of products, from virgin materials like ores, to finished materials, to discarded product,
and to disposal (Heiskanen, 2002). One of the concepts of IE is that a product is part of an industrial system,
in turn the industrial system itself is never isolated and is part of its surrounding systems and/or influenced
by them (Chertow, 2000). Hence, the social, environmental, economical and technological aspects are of
relevance for industrial systems. The interrelatedness of these aspects are represented by the notion of socio-
technical systems (STS).
From an IE perspective socio-technical systems are the physical embodiment of interrelations between man
and technology, where analysis of such a system takes into account the contribution of different social and
technical systems (Borrás & Edler, 2014). These social and technical systems are interdependent in the sense
that together they may serve a common function (e.g. STS around transportation), yet actors within the
system have different goals (e.g. manufactures, decision makers, construction workers). Technical artefacts
(e.g. cars) are dependent on the local infrastructure and arise from complex structures of supply chains that
produce only parts of the product (e.g. car tires or electronics) (Guide & Wassenhove, 2003). Qualitative and
quantitative research assists in gaining understanding of socio-technical systems, however the complex
nature of socio-technical systems creates uncertainties on many levels. For example to reach sustainability on
a systems level in transportation, collaborative efforts from various stakeholders with different perspectives is
needed. These actors need to be steered towards a common goal which should include resource conservation,
carbon emissions reduction, improvements in production efficiency and economic viability (Bichraoui,
Guillaume, & Halog, 2013). It is evident that it is uncertain who should play what roles, what technologies are
most suitable, what infrastructure is needed, what social behaviour needs to be changed and what incentives
are needed. According to Boons & Baas (1997), “Industrial Ecology demands the coordination of activities of
economic actors as well as governmental agencies”. To elaborate further on the complexity of STS several
theoretical models have been established, such as the macro-micro-macro model (Amineh Ghorbani, 2013).
This model explains that the system in which an individual is embedded influences the individual’s behaviour
and actions. In turn this results in emergent patterns of interaction and outcomes for the system as a whole.
In the STS around the transportation case, we have many individuals that make decisions on whether to buy
or lease a car, or to take public transportation. From a broad perspective one may argue that each decision
affects the use and flow of energy and materials in society (Axtell, Andrews, & Small, 2001). The change in
energy and material flows, its cause and effects due to technology and interaction of actors in a socio-
technical system cannot be easily predicted. In the field of IE solutions are not clearly visible, for example
what policies are needed to reach sustainable levels of transportation when there are rebound effects and
changes in technology, such as self-driving cars? As mentioned by Herring & Roy increased energy efficiency
leads to lower costs of energy services and in turn effects consumer behaviour (Herring & Roy, 2007). Thus
rebound effects are typically evident in socio-technical systems (Arvesen, Bright, & Hertwich, 2011). For

8

Sidney Niccolson
Thesis Research Project
February 6th, 2017
s1650548 (Leiden) - 4452909 (Delft)

more information on IE and its relations to sustainability concepts and STS, please refer to the glossary 'An
introduction to IE'.
In order to understand complex phenomena occurring within socio-technical systems, an abstract
representation (e.g. a conceptual model) is useful to arrive at better insights of the system. A conceptual
model is a high-level description, meaning it is human-understandable, yet not interpretable by a computer.
Moreover, a conceptual model can be translated to a computational model which can be simulated with
different sets of inputs, in which emergent patterns of interactions can be assessed under changing
conditions. Agent-based Modeling and Simulation (ABMS) provides ways to model and simulate complex
socio-technical systems (Amineh Ghorbani, 2013), wherein individuals with their personal values and norms
are key components that shape such a model. ABMS can be used to achieve a better understanding of socio-
technical systems through the development of building blocks that together describe the socio-technical
system.
It should be mentioned that ABMS has limitations, for instance the computer science expertise that is needed
to develop an agent-based model and simulate it properly is not always apparent (Amineh Ghorbani, 2013).
This makes it difficult to translate social-technical system models (conceptual) into a final simulation model
for analyses. A lack of familiarity with computational tools creates a barrier to involve relevant actors early in
model development. The need for system-oriented tools to support policy and regulation has been stressed by
several scientist active in the field of IE, such as Chris Davis et al. on the potential of Information,
Communication Technology (ICT) (Davis et al., 2010) and Anthony Halog et al. research in the direction of
integrated Life Cycle Assessment (LCA) (Halog & Manik, 2011). ABMS has been applied in various studies in
the field of IE (Kraines & Wallace, 2006) (Axtell et al., 2001), however the limitations of ABMS has not been
readily addressed. There are guidelines for actively involving stakeholders (participatory ABMS) in the
simulation process, but defining methods for stakeholder involvements at all stages with current ABMS tools
is rather difficult. Hence the key question remains on how to bring ABMS within reach of stakeholders with
limited programming experience. In turn what software packages would need to be developed that lower the
barrier of modeling and simulation? These scientific challenges will be explored within this research study,
more specifically regarding the application of software packages.

1.1 Thesis goal and scope

This thesis project is aimed to develop a decision support tool (platform) based on ABMS, thereby providing
incentives for stakeholder to participate more actively in the process of modeling and simulation of STS. Two
development features for such an platform are relevant to address: (1) the usefulness and (2) usability
respectively (Amineh Ghorbani, 2013). (1) Usefulness refers to the content of the tool, whether the tool serves
its aim and is as comprehensive as possible. Thus taken into account all complex dimensions of socio-
technical systems in a realistic manner, such as social, institutional and physical aspects.
Different applications were developed that addresses the usefulness by putting relevant STS concepts into a
model (conceptual modeling) (Le Page, Becu, Bommel, & Bousquet, 2012). For instance INGENIAS is a
software platform that includes social concepts for conceptual model development (García-Magariño,
Gómez-Sanz, & Fuentes-Fernández, 2009). This software tool is not aimed specific for simulations, but can be
used as a stepping stone to develop simulations through a model-driven approach. easyABMS was developed
to focus more on the methodological aspects of simulation development (Garro & Russo, 2010). easyABMS

9

Sidney Niccolson
Thesis Research Project
February 6th, 2017
s1650548 (Leiden) - 4452909 (Delft)

uses for actual simulations the REPAST platform. CORMAS is a generic agent-based simulation platform that
was developed to address specifically natural resource issues (Le Page et al., 2012). Moreover, The GAMA
platform is a tool dedicated to complex environmental models, while integrating Geographical Information
System (GIS) data (Drogoul et al., 2013). It uses a high-level modeling language, which is embedded in a
generic tool. Other tools address the whole cycle of ABMS in an abstract manner such that various models
and simulations can be created such as NETLOGO, however a good level of programming experience is
typically needed. OperettA is a prototype tool for the design, analysis and development of multi-agent
organizations developed by Dr Virginia Dignum and colleagues at the TU Delft (Aldewereld et al., 2016). The
OperA framework on which OperettA is based makes a distinction between individuals & organizations,
autonomy and collective behavior, social and selfish behavior. In which organizations refer to the notion that
they exists to fulfill a common goal. OperA is a framework for the specification of organizational structures,
while allowing inclusion of actors that act according to their own demands and capabilities in the modeling
process. Lastly Dr. Amineh Ghorbani together with Virginia Dignum and colleagues developed a conceptual
framework called MAIA (Modeling Agent systems based on Institutional Analysis) that is more aimed at
active stakeholder involvement with regards to modeling and simulations of various socio-technical systems.
The MAIA framework includes a meta-model that describes dimensions of an STS from a high level, thus
addressing the usefulness by creating a comprehensive abstract representation of such a system. It covers
concepts such as sociability, roles, organizations (A. Ghorbani, Dijkema, Bots, Alderwereld, & Dignum,
2014). MAIA can be used for policy-social oriented research and focuses on large-scale projects in which
various stakeholders are involved. An important feature that separates MAIA from the other tools described
is that MAIA is aimed to be understandable for stakeholders working in a multidisciplinary setting and tries
to specify concrete steps that are needed to go from model towards simulation. OperettA is quite similar to
MAIA in respect to the fact that both model aspects of STS making an explicit distinction between
organizations and individuals. The MAIA framework is used as a basis for the development of the decision
support tool in this thesis project.
Next to the usefulness, (2) the usability is an important concept in this thesis. The usability is reflected in the
so called practicality/ease-of-use of the tool, considering all the steps needed from model to simulation. More
specifically, providing a tool for the translation of a high-level conceptual language to a low-level
computational language. This project mostly addresses the usability providing the basis for rapid
development of STS-oriented ABMS, while implementing the MAIA meta-model. Additionally a Model
Driven Software Development (MDSD) approach is taken that utilizes meta-models for software
development.

This thesis study will therefore address the following research question:
• How can a platform for rapid development of Agent-based Models and Simulations that utilizes

Model Driven Software Development be realized, using a high-level language?
In order to assess how such a platform can be achieved, the viability needs to be examined. The viability is in
this respect determined by the technical feasibility, which will be addressed through these subquestions:

• What software modules are needed to develop the platform?
• How can these modules be interlinked, to bring about a workflow-based application?
• What steps are needed to translate socio-technical conceptual models into simulations?

10

Sidney Niccolson
Thesis Research Project
February 6th, 2017
s1650548 (Leiden) - 4452909 (Delft)

1.2 Thesis outline

The Materials & Methods sections (chapter 2) addresses what components are used to develop the decision
support tool, thereby explaining the concepts of ABMS, MAIA and MDSD, as well as several software
modules. Chapter 3 (Model-driven software development for ABM) goes into detail on how these
components interact and what methodology has been developed for the realization of the platform. Chapter 4
(AMIE - Agent-based Model-driven Integrated Environment) addresses the developed final product, that is
the software architecture and functionality. This is proceeded by a case study (Chapter 5) that illustrates a set
of scenarios to demonstrate conceptual model development, and steps required to construct Agent-based
simulations. Furthermore, Chapter 6 (Tutorial for AMIE test-users) offers a step-by-step guide on how to use
the software. Lastly, the Conclusion and Discussion (chapter 7) will outline the research questions,
recommendations for future work and reflection.

11

Sidney Niccolson
Thesis Research Project
February 6th, 2017
s1650548 (Leiden) - 4452909 (Delft)

2 Materials and Methods
The Materials and Methods chapter is dissected in modular sections in order to explain and clarify
terminologies, concepts, modules that are used throughout the thesis. First of all a more detailed explanation
is given on the MAIA framework with respect to ABMS and what means are needed to integrate it into a
software package. The second part of the Materials and Methods chapter explains the specific ICT
technologies used.

2.1 MAIA and ABMS

2.1.1 Modeling and simulating socio-technical systems

A simulation can be viewed as a method to analyze complex systems over changes in time and conditions.
Socio-technical systems can be seen as Complex Adaptive Systems (CAS) (van Dam, Nikolic, & Lukszo, 2012).
Adaptive in the sense there is a network of interaction between physical and social components that responds
to selection pressure. Complex in the sense that adaptive cycles takes place where every change in a socio-
technical system rewrites the rules of interaction between components, whereas technology, social and
economic systems co-evolve.
Nowadays the technological developments in ICT creates opportunities for simulations of such systems that
where previously deemed impossible. There have been developments to improve the ABMS process through
user interfaces, simulation languages and domain specific simulators. With Internet Of Things (IoT) devices
and increased sensor technology, modelers can use data available of the system under study to construct
models. Not only physical data is important, but also documents about the system can be used for input data,
to determine constraints of the system, or to validate output data (Huang, 2013).
Individuals with their personal values and norms are key components that shape an socio-technical oriented
Agent-based Model. Individuals are expressed as 'agents' and reside in an 'environment'. However an agent
can also be a technical artifact or a collection of individuals (e.g. a family, a company or a government),
referred to as composite agents. An individual or collection of individuals behavior is depended on
perspectives, preferences, personal values, resources, capabilities. The environment can be modeled as the
institutional setting, which determines the set of rules that coordinates certain activities for sets of agents
(Amineh Ghorbani, Bots, Dignum, & Dijkema, 2013). The institutional setting affects not only the agents
themselves, but potentially also others that do not belong to the same set of agents. Agent activities are based
on a goal (objective) an agent wants to reach, coordinated by rules. In order for a model to come close to a
real-life socio-technical system, it is also evident that individuals do not necessarily behave rational at all
times. They might have incomplete information that influences their behavior. In terms of ABMS one may
argue that the criteria on which agents act can change depending on the available information at a given
time. Random non-deterministic choices are sometimes made by agents.
ABMS will always be some steps away from reality, because the modeler decides how the model is built from
his or her perspective (e.g. the modeler decides how agents behave under a set of conditions). A modeler
would need to understand the system as a whole (what is it's function? What is the interrelation between
components?), but at the same time needs to have eye for detail to explain the components in the system.

12

Sidney Niccolson
Thesis Research Project
February 6th, 2017
s1650548 (Leiden) - 4452909 (Delft)

Next to that, when creating a model it is important to realize the modeler's position. A modeler is a person
with lived experience. One may argue that a system's model is described from the modeler's experience. Thus
another researcher would explain the system differently. Scientists that analyze real world situations should
recognize this inherent subjectivity (Huang, 2013).
The notion of emergence is another important factor for ABMS. Local individual interaction of agents in a
given environment leads to global changes in the socio-technical system. This so called emergence cannot be
predicted beforehand based on statistics or basic analytics. One may argue that a strict reductionist
explanation of STS cannot predict how it would behave under a set of conditions (e.g. changes in policies y
with respect to technology x), because the interaction of heterogeneous agents with respect to technology is
largely ignored. Neither is a strict holistic view applicable to modeling, as it denies the various individual
behavior of agents. ABMS tries to achieve a better understanding of socio-technical systems through the
development of building blocks and heterogeneous agents that together describe the socio-technical system.
Thus this perspective on modeling and understanding complexities is not strictly reductionist nor holistic.
ABMS provides various insights that can help in decision making, although ABMS has limitations as
described shortly in the introduction. These limitations are in part due to the way ABMS are mostly built
(Amineh Ghorbani, 2013). First of all social structures are not readily integrated in ABMS and the
development of MAIA has been one of the first efforts in integrating these structures. Secondly modeling STS
is something different than feeding such a model in an ABMS software application that actually runs the
model. Hence social scientist role might be to construct social models of behavior on various levels and
engineers supply information on technical artifacts, yet the ICT expertise that is needed to integrate and
simulate these distinct concepts properly is not always apparent. This makes it difficult to translate social-
technical models into an running ABMS application for analyses. Next to lack of familiarity with
computational tools, the way relevant actors are involved as discussed in the introduction is a limitation of
the current ABMS practices.

2.1.2 Conceptualization – how to go from theory to a description of a system's behavior?

Various frameworks and theories are needed to describe socio-technical systems. Ideally the process of
integrating these frameworks and theories lead to a conceptualization of a socio-technical system represented
as an Agent-based model. In ICT the notion of conceptualization is widely applied in terms of meta-models.
Meta-model is a set of concepts and relations highlighting common properties of models. For example the
Extensible Markup Language (XML) is a meta-model format used in ICT. XML based code is for exchange
and storage of data in both a human and computer understandable way (w3schools, 2016). Essentially meta-
models have a structured description of a model, while at the same time providing a medium for translation
from high level languages to low level languages. High level languages are relatively close to human language
and is therefore human understandable. Low level languages are commonly used for executable software.
Meta-models provide a standardized way of describing models, hence this gives incentives for participatory
modeling and simulation. Additionally, meta-models are an integral part of Model Driven Software
Development. See section 2.2 for further elaboration on the relation between meta-models and MDSD.

13

Sidney Niccolson
Thesis Research Project
February 6th, 2017
s1650548 (Leiden) - 4452909 (Delft)

2.1.3 The MAIA meta-model

A socio-technical system is shaped by social structures, and has resources and institutions. Institutions
influence agent actions through rules, but agents also perform tactical behavior violating norms and rules.
However it can be argued that institutions do coordinate agent behaviors to a large extent. The Institutional
Analysis and Development framework (IAD) was proposed in 1994 to gain an understanding of the
underlying social structures that shape social systems, thereby observing patterns of behaviors and
interaction in an given environment. IAD has been developed for over 30 years and used in multiple case
studies (Amineh Ghorbani, 2013). The conceptual framework MAIA is built upon IAD and was developed to
help modelers conceptualize and implement agent-based models for socio-technical systems (Amineh
Ghorbani et al., 2013). The MAIA meta-model is viewed as a description of a STS shaped by social structures
in time and space (A Ghorbani, Dijkema, Bots, Alderwereld, & Dignum, 2014). MAIA addresses different
components of a socio-technical system. Hence the meta-model is organized according to six structures:

• collective structure: These are agents and their attributes. For example attributes can
encompass an agent's perspective, preferences, personal values, resources, capabilities.

• constitutional structure: The social context. This is based on rules and conventions
alternatively said institutional statements. Institutional statements govern agent behavior/actions to a
large extent. The constitutional structure is based on ADICO. ADICO refers to five elements that an
institutional statement has: Attributes (the designed role of the statements), Deontic (the set of
rules/laws that determine whether it is an obligation, permission, prohibition), aIM (action that has
to be taken by an agent), Condition (in which case), Or else (defines what happens if an agent does
not comply). Institutional statements can be categorized into three types: rules, norms and shared
strategies. If all five elements of ADICO are defined we can speak of a rule. If there is no “Or else”
than it is a norm, in this case the consequences of non compliance is not clear. If there is no
obligation or sanction than it is a shared strategy that agents may perform.

• physical structure: The physical aspects of the STS. Such as technical artifacts with their
properties (e.g. weight, price, efficiency). This structure also embodies the things that can be done
with them (e.g. selling, renting, buying), their behaviors (e.g. aging) and whether the product is
public (accessible to all individuals) or private.

• operational structure: The dynamics of the system. An agent influences the respective system's
state in time and space. The operational structure defines the actions order as each agent has a time
frame to perform actions (entity actions) he may be able to execute. What he executes is dependent
on 'preconditions' (feasibility e.g. having sufficient money). The action of an agent can in addition be
dependent on institutional statements or an agent may go through a decision making process. After
execution of an agent's task there is a 'postcondition', which is an update of the system's state (e.g. the
loss of money due to expenditures). If an agent cannot perform the actions, because the precondition
is not met, there might be consequences for the respective agent or the system.

• evaluative structure: The concepts used to validate and measure the outcome of the system. A
model is steps away from reality as mentioned earlier, although it may serve as a valuable measure to
assess complex socio-technical systems. From an evaluative perspective a model is not perfect as it
may contain bugs in code or conceptualization errors. Therefore the evaluative structure forces a

14

Sidney Niccolson
Thesis Research Project
February 6th, 2017
s1650548 (Leiden) - 4452909 (Delft)

modeler to be explicit about what patterns of interaction and outcomes of the system is expected.
This way the modeler should ask how realistic the model is and whether the model helps answer the
research question. A modeler may define certain constraints of the system (e.g. an agent may not
have a negative cash balance). In the evaluative structure a modeler specifies the variables that may
serve as useful indicators to answer their respective research questions (e.g. the amount of
investments by agents).

• ontological structure: Is a container to built an ontology for specific case studies. Meaning that
the concepts of a certain domain can be stored and reused.

The MAIA meta-model helps in breaking down and conceptualizing a socio-technical system by structuring
complexities, by explicitly defining key characteristics of the system. These six structures outlined above are
ought to be filled in by the modeler and this formal structuring makes it a step closer to simulation. With
system conceptualization the modeler is forced to think about what components are relevant to include,
thereby forcing to address the system boundaries. MAIA provides a medium and source of documentation
that would increase legitimacy due to the standardized, structured nature of the meta-model, providing a
common language between modelers which serves as a basis for re-use of components (building blocks) in
models. A modeler can give interviews and prototype simulations to construct and validate the model with
the involvement of stakeholders. In addition MAIA is based on IAD which defines institutions as the building
blocks of social structures, thus integrating the notion of social structures.

2.2 Model Driven Software Development

MDSD is one of the key concepts used to bring about the development of the MAIA-based platform. MDSD is
an approach that allows for rapid software development through the use of application models, alternatively
said meta-models (Generative Software Engineering, 2016). These meta-models are used during
development, providing means for conceptual software design, the reuse of software components and
effective software implementation. Hence MDSD requires meta-models that describe what to model (abstract
meta-model), how to make transformation from high level to low level language (set of protocols), what
transformation platforms to use (e.g. actual code that transforms model to simulation-ready code) (Amineh
Ghorbani, 2013).
With a MDSD methodology, parts of the software can be automatically generated and this fits within the
realm of automatic code generation. The benefit of MDSD lays in the fact that repetitive aspects of software
development are automated and a more standardized software architecture can be achieved. In the field of
ABMS, MDSD is still in its infancy, however concepts of MDSD might prove useful for effective ABMS
development.
Model Driven Architecture (MDA) is an industry architecture that utilizes standardized formats (collections
of specifications) such as XML and was proposed by the OMG consortium (Object Management Group) in
1999 (Frank Budinsky, David Steinberg, Ed Merks, Raymond Ellersick, 2003). MDA is in a way the
standardization of MDSD concepts. MDSD itself is not bound to standards, meaning that with a MDSD
approach, any meta-model can be developed, while with MDA meta-models are realized according to specific
formats. This distinction is important as the MAIA meta-model is not necessarily bound to formats, thus it
suits the notion of MDSD instead of MDA. However several software components that are described in the

15

Sidney Niccolson
Thesis Research Project
February 6th, 2017
s1650548 (Leiden) - 4452909 (Delft)

following sections are a part of the MDA. Additionally, the MAIA meta-model is translated into a MDA
format in order to realize the implementation efforts needed to develop the platform.

2.3 Java and object oriented programming

The MAIA meta-model is conceptually rich, however integrating those concepts into a platform is not
straightforward and many different options exists to implement the MAIA meta-model. In this thesis Java
has been the backbone for the platform development and much of the Java terminology will be used in later
sections. In this sub-chapter relevant terminologies are shortly described.
In general Java is a popular programming language for developing software applications (Liang, 2009). The
benefit of Java is mostly based on Operating System/platform interoperability. Java can be dissected in three
modules: JRE (Java Runtime Environment), JVM (Java Virtual Machine) and JDK (JavaDevelopers Kit). The
JVM provides a platform independent way of executing code. The JRE contains libraries that provide
functions (e.g. math functions) and also includes the JVM. Most computers have a JRE installed and can
therefore run Java-based applications. JDK is used for developing Java applications, that is writing Java source
code and compiling them (converting the code to computer readable language). When JDK is installed it is
supplied with a JRE to be able to run the developed Java applications. See figure 2.1 for a typical Java
application process. The terminology for Java libraries that provide functions is defined as Java Application
Interfaces or alternatively said Java frameworks, Java API's. Java API's were used for developing the software
application.

Figure 2.1: A typical Java applications process. The Welcome.Java file contains Java source code (human readable language) of
the Java application. A compiler(part of JDK) converts the Java source code to computer readable code(byte

code>Welcome.class). Along with library code(part of JRE) the application can be executed by the JVM (part of JRE).

Object oriented programming (OOP) is one of the key concepts used for large application development. The
notion on OOP does not only relate to the Java language, but many other programming languages. In general
programmers define functions (tasks, procedures, methods) and variables. Variables are symbolic labels
associated with a value and whose associated value can be changed. A function is an encapsulation of a
specific “thing” a program should do (e.g. a math calculation on two variables). In OOP this encapsulation is
extended to code residing in different locations and these code 'snippets' represent classes (Java jargon).
Functions can reside in these classes and both classes and functions represent a certain degree of modularity.
This explicit breakdown makes programming more transparent and often quicker as no reinvention of the

16

Sidney Niccolson
Thesis Research Project
February 6th, 2017
s1650548 (Leiden) - 4452909 (Delft)

wheel is needed if functions are already created by other programmers (Liang, 2009). In this case these
classes containing functions are referred to as libraries. Additionally classes are commonly used to protect
data. For instance, Java developers might define variables inside classes that should not be accessible by
others due to security policies. The use of functions from other classes is called inheritance and is used
extensively in this thesis. An object is another key term used in programming languages. An object is an
abstract representation of a state and behavior of 'something' (e.g. a car object has a state color 'brown' and
it's behavior is 'moving'). An object is a member of a class (e.g. class car), however these terms are commonly
used interchangeably. In this thesis project the MAIA meta-model is translated to a set of Java classes
representing the six MAIA structures at its core following MDA. An instance is an object created from a class
and the notion on instances allows users too create their own model based on MAIA. Practically speaking
users develop instances of the MAIA meta-model, by using inheritance through developed Java-based
Graphical User Interfaces (GUI's). Lastly, the concept of abstract classes and static classes should be shortly
addressed. Abstract classes are 'blueprints' that represent the architecture (e.g. general functions) an instance
class should have, these abstract classes are MAIA meta-model classes. Instance classes represents specific
case studies information. Static classes are also used to define variables that should be shared among agents.
A static class is actually an instance by itself, however no instances can be created from it. If variables are
defined in a static class, these variables can be used by instances of other abstract classes, which is of
importance in ABMS in terms of the sharing of properties.

2.4 Eclipse

Eclipse is an open source based software platform developed for tool development and integration. The
platform developed is an Eclipse version with custom features that satisfy the needs of ABMS and MAIA.
Eclipse is a generic framework that allows for a wide range of extensions on different domains (Frank
Budinsky, David Steinberg, Ed Merks, Raymond Ellersick, 2003). It is made out of (1) a platform which
defines a framework for extending and building Integrated Development Environment's (IDE's). (2) Java
Development Tools (JDT) which signifies ways to develop programs for Eclipse (Java based). (3) The plugin
development environment which provides views and editors for the creation of plugins for Eclipse. Eclipse
simply works with files and folders and has an API that deals with the creation of projects. In the developed
decision support tool, the projects reflect actual Agent-based model creation projects and ABMS experiment-
related projects. On the next page a short description of Eclipse terminology.

17

Sidney Niccolson
Thesis Research Project
February 6th, 2017
s1650548 (Leiden) - 4452909 (Delft)

• plugins: Plugins have all the components needed for creating tools such as code, images, text and a
MANIFEST file (called a plugin.xml) that declares interconnections to other plugins.

• resources: A resource is an eclipse representation of a file or folder that provides capabilities such
as change listeners (resource change notifications), markers (error messages) and previous content
tracking.

• projects: A project is a special resource (top-level folder). If it is of a Java “nature”, then it contains
Java source code.

• SWT: Operating System (OS) independent Java graphics library typically used in Eclipse.
• aceJF : uses SWT, but is a higher level implementation. Provides classes for managing monitors,

images. Has an action-framework which can be used to add commands for toolbars, menubars
creations.

• workbench: is an arrangement of views and editors and is implemented with the use of SWT and
JFace. Extending Eclipse can be done with the use of “extension points” which allow for new editors,
views and perspectives or customization of existing ones.

• project explorer: part of the workbench and is used to manage resources and projects.
• packages: is a folder containing Java classes
• wizards: is a GUI interface that is commonly used for the creation of new elements such as

resources or projects.

2.4.1 Eclipse Modeling Framework (EMF)

Eclipse EMF is aimed at the unification of Unified Modeling Language(UML), Java and XML in order to built
integrated software tools (Frank Budinsky, David Steinberg, Ed Merks, Raymond Ellersick, 2003). UML has
been used extensively in the field of ICT and is an approach to document, share and communicate model
designs across stakeholders and organizations. EMF is part of the MDA and uses model-to-code
transformations using design, patterns and templates. EMF is used as a way to develop MAIA-based abstract
classes from the MAIA meta-model. A meta-model in EMF referred to as an Ecore model is not necessarily
the high-level description usually used with UML, because modeling concepts in EMF are directly related to
implementations. EMF is integrated with the JDT of Eclipse which is needed to install and use EMF plugins.
A model in EMF can be UML, XML, EMF-based model or Java code. EMF model glues everything together,
because a model in XML can represent the same as a model in Java code. People familiar with programming
view models occasionally as unnecessary, because programmers can write code that is a model and
implementation at the same time. Or alternatively, in large complicated applications modeling is taken as a
requirement, but usually there is a gap between developing the high-level model and the implementation
(low-level) of that model. In EMF there is a seamlessly integrated notion of model and implementation and
developers can choose to what extent this integration works. EMF models describes what your applications is
supposed to do (design). This gap between model and implementation is done through mapping. For more
information on EMF please refer to appendix 1 'An Overview of EMF'.

18

Sidney Niccolson
Thesis Research Project
February 6th, 2017
s1650548 (Leiden) - 4452909 (Delft)

2.4.2 Java Emitter Templates (JET)

The EMF framework provides another component called: Java Emitter Templates (JET). JET is an engine that
can convert models to SQL, JAVA, XML, Text, HTML formats. JET Templates are used to create
implementation classes, meaning that JET provides the translation platform for STS case studies based on the
MAIA meta-model (EMF abstract classes). How EMF exactly interrelates with JET will be discussed in detail
in the chapter 3 and 4. The JET language is made up out 'scriplets', 'Expressions', 'Directives'. Scriplets is Java
code residing in between, '<%' symbols. Expressions are used to insert string values denoted with '{{}}'
symbols. Directives are used for specifying output files configurations. Refer to appendix 2 'JET Syntax' for
details.

2.4.3 Eclipse Rich Client Platform (RCP)

The Eclipse Rich Client Platform provides means for developers to create stand-alone software applications. It
is based on the Eclipse and EMF infrastructure. RCP takes on a modular approach and uses the concept of
MDSD extensively. RCP version 4 includes simple editors and Cascading Style Sheets (CSS) styling for stand-
alone software development. As mentioned the platform developed is an Eclipse version, in which the RCP is
utilized to lay out the basic infrastructure on which MAIA-EMF and JET functionalities are added. Refer to
appendix 3 for information on the Eclipse Rich Client Platform.

19

Sidney Niccolson
Thesis Research Project
February 6th, 2017
s1650548 (Leiden) - 4452909 (Delft)

3 Model-driven software development for ABMS
The Materials and Methods chapter addressed all the modules required in order to develop the decision
support tool. The terminologies that are elaborated in that section will be used for the rest of the thesis
report. This chapter addresses how these modules interface which each other and how the MAIA framework
is embedded. The MAIA framework is extensive, so far the six main structures are elaborated. For more in-
depth details of MAIA concepts and how they relate to ABMS refer to appendix 4 'MAIA Concepts & ABMS'.
For more information on what MAIA concepts are integrated in the decision support tool refer to appendix 5
'Platform Implementations of MAIA Concepts'.

3.1 The application development approach

The thesis project focuses on the development of an application platform that is able to translate input data
from users to computer understandable code. Therefore providing an interface for clients with limited
experience in programming to construct an ABMS for STS based on the MAIA framework. As mentioned in
the introduction, chapter 2.1.2 and 2.2 there is a need for the transition from high level languages (meta-
models) to low level languages (computer understandable code). The MAIA meta-model can be referred to as
a Computational Independent Model (CIM), which is only a description of a model at a conceptual level (e.g.
what to put in a model). It does not provide details in a low level, computer understandable language. Hence
a Platform Specific Model (PSM/domain specific model) is needed which is the realization of a model for a
specific platform (e.g. a PSM in the programming language Java). Figure 3.1 shows an overview of the scope
of the project. In the following sections a more detailed methodological explanation will be given on the
Transformation Platform and how instance model's are constructed.

Figure 3.1: Phase 1 embodies the development of the platform (interface): the creation of the MAIA meta-model interface and the development of a transformation
platform to executable code. In addition the case study would be developed, hereby a MAIA model is created (based on the meta-model) and this model will be

translated to executable code. Phase 2 signifies the evaluation of the model simulation and developed software.

20

Theories and
frameworks

MAIA meta-
model

Transformation
platform

Simulation

Evaluation

ModelCase study

Phase 1

Phase 1 Phase 2

Phase 2

Phase 1

Sidney Niccolson
Thesis Research Project
February 6th, 2017
s1650548 (Leiden) - 4452909 (Delft)

3.2 Model development infrastructure – EMF processes

This section focuses on how the MAIA meta-model and MAIA instance models are integrated in the decision
support tool using the MDA of EMF and JET. Figure 3.2 shows an overview of the conceptual flow from meta-
model integration (black box) to model instance development (black box) to generated code for simulation
(grey box and grey circle).

Figure 3.2: The MAIA meta-model functions as a virtual skeleton for case studies based on the MAIA theoretical framework. This meta-model is integrated in
Eclipse EMF, resulting in a XMI file that contains all respective information on the theoretical framework. The instance-model depicted below the meta-model box

uses this information to create instances of that model. Meaning that it provides methods to fill in the skeleton with information regarding a specific case study. The
grayed out boxes will be explained in the superseding section in order to breakdown the processes.

Figure 3.3 on the next page represents a zoomed in view of the Meta-model and instance model integration.

21

Instance-model
Conceptual: MAIA instance
Abstract: PSM
Technical: XML

Meta-model
Conceptual: MAIA
Abstract: Eclipse EMF
Technical: XMI

Sidney Niccolson
Thesis Research Project
February 6th, 2017
s1650548 (Leiden) - 4452909 (Delft)

Figure 3.3: This figure shows an overview of developing the MAIA meta-model and exposing it for use. Dotted boxes show
potential inputs, while green boxes show embedded processes in the developed application. The blue box is the

resulting output of the whole process, which is an actual MAIA instance. Black boxes are not used, but nevertheless are
relevant. With EMF, developers can create a so called Ecore/core model. This can be generated based on inputs such as

annotated Java, UML or XML files. In addition a core model can be directly modeled with EMF's default visual editor. Once a
core model is created, Java code can be generated that is (1) the model code, (2) emf.edit code, (3) emf.editor code. This
code is used in order for users to create MAIA instances. Normally emf.editor can be used to start a GUI, however this is

fairly low-level and requires object oriented programming skills. Hence through the use of EMFForms (Extension of EMF)
instances can be created in a more user-friendly manner with a more straight-forward GUI.

22

- XML
- Annotated Java
- UML (rose) Possible input

Direct Ecore modeling

MAIA Core meta-model
format: ecore / XMI

Ecore model
(meta-meta model)

Develop

Inherits MAIA
generator model
(genmodel)

Model Java code
- Interfaces
- Implementation
- Classes

Emf.edit
Implements viewers
and editors for
core model instances
based on EMFForms

Emf.editor
Create and
edit instances of the
model at runtime

MAIA instance
model development
format: XML

Creates

Generates

Use objects

User Interface
implementation

Run-time environment for model
instance creation (not used)

Sidney Niccolson
Thesis Research Project
February 6th, 2017
s1650548 (Leiden) - 4452909 (Delft)

3.3 Transformation platform infrastructure – JET processes

This section describes what technical steps are relevant to go from an instance model towards Java-based
ABM simulation. Figure 3.4 shows the conceptual flow process again, but the focus is now on the last couple
of processes.

Figure 3.4: In the current implementation Text output is generated based on a custom created translation-model. This translation-model is tied to the MAIA
instance model by a custom Java class. This custom class generates Text output that is used at a later step to create actual Java files and packages.

Figure 3.5 below describes a zoomed in version of the transformation platform.

Figure 3.5: The MAIA instance model serves as input to the custom Java class. This class uses the translation-model's Java files to configure Java-based relations with
respect to the instance model. The custom Java class is also dependent on EMF and the MAIA core model through Java libraries. The whole process is on the

background of the developed application, meaning that users only need to specify the MAIA instance model location and Java code is generated based on that.
Additionally just before that step a GUI is presented for runtime information (see box Application-plugin component).The green boxes signify the embedded

processes in the application. The final Java-based ABM generated is independent of EMF and MAIA libraries.

23

MAIA instance
model
format: XML

Translation-model
Java emitter templates
format: txtjet

Translation-model
JET dependent classes
format: Java

Generates

Custom Java class
format: JavaInput

Uses

Dependencies
EMF libraries and MAIA
core model library
format: Java Archive
(JAR)

Uses

Application plugin-
component
GUI layer

Text Simulation
output

Java Simulation
output

Java-based ABM
Packages and classes
format: Java

Sidney Niccolson
Thesis Research Project
February 6th, 2017
s1650548 (Leiden) - 4452909 (Delft)

JET is a useful technology for automatic code generation. In this thesis JET is used as a supporting tool for
creation of Java code from MAIA instance models. Below in figure 3.6 and 3.7 two examples of JET usage.

Figure 3.6: The txtjet file contains at first a description on the location in which the output should be set. It specifies the class name and specifies the package along
with possible imports if needed (not shown in this example). Under the description settings, the actual contents of the file are projected. In this case it is in abstract
class, thus no information from MAIA instance files is needed and this can be hard-coded. The custom Java class uses the output of JET to construct the final Java

file. In this case not much is generated besides a standard abstract class.

24

<%@ jet package="JETTemplates"
class="Agent" %>
package collectiveStructure;

public abstract class Agent { int
id; int plan; int step; public
boolean assignRole(Role role)
{ return true; } public boolean
decision(){ return true; }}

TXTJET file JET dependent Java file

package JETTemplates;

public class Agent
{
 protected static String nl;
 public static synchronized Agent
create(String lineSeparator)
 {
 nl = lineSeparator;
 Agent result = new Agent();
..........

Custom Java class

output(new JETTemplates.Agent
().generate(null), "Agent");

Final Java file

package collectiveStructure;

public abstract class Agent {
 int id;
 int plan;
 int step;

 public boolean assignRole(Role
role){
 return true;
 }

Generates Uses

Generates

Sidney Niccolson
Thesis Research Project
February 6th, 2017
s1650548 (Leiden) - 4452909 (Delft)

Figure 3.7: The txtjet file instantiates an object of the type Agent. The custom Java class uses the generated Java file from txtjet as a skeleton. This skeleton specifies
how the output file should look like (it defines the class and package name, it defines additional type descriptions of MAIA instance data if needed). The actual

MAIA instance contains agents that can be parsed into this skeleton, thus creating final Java files for each agent that contains all needed information. This step is
performed for all MAIA structures, hence a final Java-based ABM model with multiple packages and classes can be created. See blue text for a mapping process

example.

25

<%@ jet package="JETTemplates"
class="Agent_instance"
imports="maia.physicalStructure.*
maia.collectiveStructure.*
maia.ontologicalStructure.*" %>
package collectiveStructure;
<%
 maia.collectiveStructure.Agent
agent1 =
(maia.collectiveStructure.Agent)arg
ument;%>
Public class <%=agent.getName())
%>Agent extends Agent{
......

TXTJET file JET dependent Java file

package JETTemplates;

import maia.physicalStructure.*;
import
maia.collectiveStructure.*;
import
maia.ontologicalStructure.*;

public class Agent_instance
{
.........

Custom Java class

for (Agent agent :
maia.getCollectiveStructure
().getAgent())
 {
 output(new
JETTemplates.Agent_instance
().generate(agent), "Agent");
}
}

Final Java file

package collectiveStructure;
import
physicalStructure.OldComputerPhyCom;
public class WorkerAgent extends Agent
{
 private boolean economic = false;
public boolean getEconomic(){ return
economic; }
public void setEconomic(boolean value)
{ economic = value; }

Generates

Uses

Generates<?xml version="1.0"
encoding="UTF-8"?>
......
 <collectiveStructure>
 <agent name="worker"
.......
</collectiveStructure>

MAIA instance model (XML)

Uses

Sidney Niccolson
Thesis Research Project
February 6th, 2017
s1650548 (Leiden) - 4452909 (Delft)

4 AMIE - Agent-based Model-driven Integrated Environment
The Material and Methods chapter presented the concepts and components required for application
development of the platform. The previous chapter explained in detail the methodology of connecting the
software components together. However the software architecture and the software functionality has not been
discussed. Therefore, the following sections will address these aspects and this is supported by a case study in
chapter 5 that explains the steps from conceptual model development, to implementation, to simulation.
Agent-based Model-driven Integrated Environment (AMIE) was developed as a proof of concept, aimed to
demonstrate that MDSD can be used to bring about a platform for ABMS, specifically for STS. AMIE tries to
lower the barrier for non-programmers, through structured Agent-based model creation, implementation
and simulation in an embedded environment. AMIE functions on multiple OS's such as Linux (tested during
development), Windows (tested during development) and Mac. The different versions can be found on
GitHub https://github.com/SidneyNiccolson/RCPplatform and the only prerequisite is that Java version 8 or
higher is installed on the computer.

4.1 Software Architecture

The software architecture of the tool has been developed with Eclipse-based tutorials and the EMF
Developer's Guide (Frank Budinsky, David Steinberg, Ed Merks, Raymond Ellersick, 2003). Please refer to
appendix 6 'Development MAIA-based RCP' for more in-depth information on the development processes
including dependencies for creating the decision support tool. The complete source code with additional
third-party tutorials can be found on the GitHub page. The Eclipse Modeling Framework has been used to
integrate the MAIA meta-model, in turn instances can be created by an EMF editor (EMFForms) previously
illustrated in figure 3.3. The XML instance output can be used by JET to produce simulation ready code as
described in chapter 3.3 'JET processes'. All these components together are embedded in the Eclipse Rich
Client platform. See figure 4.1 on the next page for a high level abstraction of the AMIE architecture.

26

https://github.com/SidneyNiccolson/RCPplatform

Sidney Niccolson
Thesis Research Project
February 6th, 2017
s1650548 (Leiden) - 4452909 (Delft)

Figure 4.1: A high level abstraction of AMIE architecture.

EMF, EMFForms, JET and custom Java implementations are the modules used to allow for the integration of
the MAIA meta-model, the creation of MAIA-based models and MAIA-based simulation packages. Users
leverage the EMFForms editor and parts of the Custom Java implementation, while the EMF and JET
modules are background processes. In the preceding section more details on the user-side of AMIE.

27

Rich Client Platform

MAIA Meta-model integration

Eclipse Modeling Framework

Graphical User Interface / editor

EMFForms

MAIA Meta-model integration

Eclipse Modeling Framework

translation & code generation

Custom Java implementation

Management of

Translation platform

Java Emitter Templates

MAIA-based model

XML instance

MAIA-based simulation package

Java Simulation Code

Sidney Niccolson
Thesis Research Project
February 6th, 2017
s1650548 (Leiden) - 4452909 (Delft)

4.2 Software functionality

With AMIE, users interact with the application through interfaces to manage files, experiments and develop
models and simulations. A breakdown can be made between the various user processes namely:

• model creation. After a MAIA conceptual model has been developed and implementation details
have been described, the model can be implemented in the application. Thereby model specific inputs
can be given using the EMF model editor (EMFForms). Once the model is finished the model can be
used for simulation code generation.

• simulation code generation. The format of the model created in model creation is XML. JET
parses through this file, using EMF/MAIA libraries in order to create simulation code. This process is
shortly interrupted by a dynamic Graphical User-face, that asks the user for runtime simulation
information based on the input model. The Dynamic GUI will be further described in the preceding
section.

• simulation. Once the code generation process is finished, a bundle of various Java packages are
generated representing the MAIA instance model data as a project in AMIE. The bundle of packages
forms the Agent-based simulation code and reside in the Project Explorer. The simulation procedure
can now be started.

• evaluation. During runtime of the simulation, the user is notified the current progress of the
simulation. The simulation output is a Comma-delimited File tracking all agent attributes of the
simulation, in addition users can specify visuals to be generated during simulation.

 Chapter 6 showcases a step-by-step guide on the user interface processes described above. See figure 4.2 on
the next page for an overview on how a user typically interacts with the AMIE software.

28

Sidney Niccolson
Thesis Research Project
February 6th, 2017
s1650548 (Leiden) - 4452909 (Delft)

29

Model creation

Collective structure
Agents

Ontological structure
Properties/attributes
Statements/Conditions
(Numberical, boolean,
Strings)

Physical structure
Physical components
(public/open, private/
fenced)

Constitutional
structure
Agent roles

Operational
structure
Entity Actions
 (functions/procedures)

Linkages of
attributes

Statements/Conditions

Entity actions (behavior)

Enacts

Possibly
owns

Entity actions (behavior)

Entity actions (behavior)

Possibly
owns

AMIE - Agent-based Model-driven Integrated Environment

User

Code generation

Dynamic GUI

Execution of simulation

Evaluation

Project Explorer

Operational
structure (runtime data)
Entity Actions order, visuals
 Initialization of agent attr.

Management of experiments, models

Evaluative structure
CSV, generated
visualizations

Export, import of models/sim.

Interface with
model editor

Model instance output

Experiment
simulation bundle

Generation of packages
representing MAIA structures Sim. code output

ready for storage

Invokes

Interface with
Dynamic GUI

Manage experiments
and models

Run ABM experiment and evaluate

Evaluate results
generated

Simulations
available

Model instance for storage

Model instance input
Adjust model
implementation
(optional)

Adjust run-time data
(optional)

Figure 4.2: AMIE interaction

Sidney Niccolson
Thesis Research Project
February 6th, 2017
s1650548 (Leiden) - 4452909 (Delft)

4.2.1 Procedural semantics

In order to construct and operationalize an ABMS with the developed platform, a description of the
procedural semantics is needed. In this section of the thesis paper an explanation from a high-level
perspective will be given on the procedures of a simulation. These procedures are defined by the user in the
model and the supportive Dynamic GUI which has been described shortly in figure 3.5 box 'Application
plugin component GUI layer' and in the previous section. If deemed necessary pseudo code will be provided.
The procedural semantics of the platform follows for a large part the semantics described in the paper
'Procedural semantics of a MAIA model' (A. Ghorbani et al., 2014). A detailed description will be given on
the general operationalization of any ABM created with AMIE which will be referred to as the 'main
simulation'. The specific procedures that agents perform, are referred to as 'entity actions'. The '<' and '>'
symbols describe the boundaries of what should serve as input specific to a case study, for example if the
explanation points to an agent of a case study we denote it as: <Agent>. If an explanation describes a general
method it is denoted as 'method name' with a () symbol in the end. Any comments in the pseudo code given
will be denoted in italic with a preceding // sign.

the main simulation
The main simulation can be dissected in 5 tasks namely initialize(), main(), analyseData(), createCSV(),
generatePlots(). The general initialize() method, initializes the agent types of an ABM. Meaning that in the
model's collective structure, <Agent> is initialized. Thereby their amounts and potential variations of specific
attributes are specified. For example in a model the agent type <Citizen> might have as attributes <Age>, the
modeler might want to have 50 of those agent types, with varying <Age>. The agent types are captured in so
called “lists”, which are data structures that hold elements (each element signifies an agent). The box below
shows the initialize method in pseudo code. In addition the number of ticks is defined in this method.

Initialize()
 set<Ticks> //set the ticks defined by the user in the GUI
 int numberOf<Agent> //set the number of agent types defined by the user in the GUI, e.g. 50
 for numberOf<Agent> //loop over the number of agents specified
 set ID // give the agent an ID (if it's a Role the ID is the same as the Agent enacting the role)
 set variation of <attributes> // give the agent an attribute value in a range, e.g. age 1-70
 append<Agent> //add the agent to the list of that specific agent type

The analyseData() method tracks attributes of the ABM per tick and writes them to a Comma Separated
Value (CSV) file. All agent's properties and its physical component's properties are tracked. If visualizations
for attributes are defined in the Dynamic GUI a list is constructed for it. And the tracked attributes are
appended to that list.
AnalyseData()
 get ticks // determine what tick the simulation is in
 for each <Agent>
 get<Attributes> //get the attributes value per tick
 addToPlotList<Attributes> //construct the data to be plotted on the fly
 writeToCSV //write all data immediately to a CSV per tick

30

Sidney Niccolson
Thesis Research Project
February 6th, 2017
s1650548 (Leiden) - 4452909 (Delft)

The createCSV() method returns a CSV object, this object is a pointer to an empty CSV file. In the
analyseData() method this pointer is used to write all data immediately to the CSV. The generatePlots()
method uses the constructed list of the analyseData() method to generate plots.
The main() method invokes the initialize() method, it defines what agent's should do per tick and invokes all
other methods. Below the pseudo code for the main() method.

Main()
 printStartOfSimulation //Output to the console that the simulation started
 initialize() // invoke initialize method
 getTicks // get the ticks specified in initialize method
 createCSV() // get the pointer to the CSV in order to write to it
 for each <Tick>
 shuffleAgentList //make sure that per tick the agent entering first is different
 for each <Agent>
 invoke<EntityActions> //call entity actions
 analyseData() //invoke analyseData() each tick
 closeCSVfile //Close the CSV file ,because at this point all data has been collected
 generatePlots() //as the lists for plotting are constructed we generate them all at once
 printEndOfSimulation //Output to the console that the simulation has ended

Notice the shuffleAgentList, agent entity actions are ordered by the user, but this does not create necessarily a
deterministic model by default. This is because agent lists shuffle which causes each agent to enter at a
different time during a tick. For example this creates the possibility to limit agent actions (e.g. if resources
has depleted because other agents already used them, the agent entering at a later point cannot use the
resources anymore).

conceptualizing the notion on agents
So far in this section agents are described as part of the collective structure. In ABMS an agent can be
anything, thus the MAIA theoretical framework also describes Roles and Physical Components. Conceptually
speaking they can be an agent. For instance the agent <Citizen> might enact the Role of <Consumer>, in that
Role he/she might have access to Physical Components <Car>. Those Physical Components have properties
<Gas>. In this case the Role of <Consumer> signifies that it is an agent, as it might perform entity actions
such as driving the <Car>. A Physical Component might be an <ElectricalGrid> and the properties could be
<TotalDailySupply>. If the Physical Component is specified as “OPEN” in the model, this information is
freely available by all agent's in the system. The <TotalDailySupply> might be determined by an entity action
<Monitor>. The monitoring of the electrical grid might be performed by the Physical Component itself, thus
in this case it is an agent. With these examples Roles and Physical Components are both viewed as agents and
the code generation of the main simulation will include them and their properties. The difference is that the
Physical Component if set to “OPEN” will not be initialized, but is a static class (for more information on
static classes see section 2.3 object oriented programming).

31

Sidney Niccolson
Thesis Research Project
February 6th, 2017
s1650548 (Leiden) - 4452909 (Delft)

4.2.2 Error handling

The developed platform has multiple error handling mechanisms in place which are shortly described below.
• Dynamic GUI error handling: In the Dynamic Gui user input is limited to the relevant data input

required. For example the number of ticks can only be specified by Integer data types (whole
numbers). Number Properties of MAIA agent's can be of data type Double (decimal numbers).
Letters (String values) are typically not allowed and cannot be set in these text boxes. If the user does
not fill in all required information for simulation, a notification will appear to show that not all data
required is filled in.

• The Log Package: Once code has been produced from a MAIA model, a Log Package is created
displayed in the Project Explorer. Inside resides a log.txt that tracks how successful the code
generation went. If something went wrong it should be visible in this text file.

• Default Java-Eclipse error messages: It cannot be fully prevented that users give wrong input's during
model creation. However Eclipse provides general error messages if simulation code is not complete
or faulty. These error messages likely reside in the MAIA generated structures and users can open the
respective Java classes. Often Eclipse provides a recommendation on how to solve the error message.

32

Sidney Niccolson
Thesis Research Project
February 6th, 2017
s1650548 (Leiden) - 4452909 (Delft)

5 Case study
The previous sections elaborated on the software architecture, functionality, in turn this section will
emphasize on a case study. Thereby showcasing how MAIA-based models can be developed and
implementation details for using it in the software package AMIE. In order to explain the functionalities of
the tool, an example of three subsequent scenarios will be elaborated, showcasing how an electrical grid is
influenced by different parameters, such as seasonal changes, behavioral changes and subsidy for renewable
energy. This example is not a comprehensive ABM using real-time data. The reason for this approach is that
some assumptions will be oversimplified for the purpose of explaining the inner workings of the platform and
how the tool can be used for STS model development. Moreover, scenario 1 explores the development of a
basic supply and demand model. Scenario 2 explains the impact of subsidy for renewable energy specifically
for residential housings. Scenario 3 will showcase the changes in the system if smart-monitoring is widely
implemented. Models for all scenarios and output files can be found on the GitHub page. Chapter 6 will
encompass a tutorial for AMIE test-users using the case study as an example.

5.1 An introduction to the case study

An electrical network (grid) supplies electricity to customers usually on a national or even international level,
such a system is a fairly complex type of network. In conventional electrical networks demand drives the
supply. Meaning that supply follows demand and electricity generation is centralized (H Gharavi, 2011). Since
the emergence of renewable energy the conventional network has become inflexible, mainly due to the
intermittent nature of renewable energy. Currently policies, technological development and environmental
concerns drive the energy system as a whole towards an efficient and highly dynamic system. Balancing a
conventional centralized network gets more and more complicated when the use of renewable energy
increases. Hence the concept of smart-grids has been developed over the years that potentially offers new
ways of balancing electricity grids. Smart-grids are electrical networks that integrate the demand and supply
of electricity intelligently (Clastres, 2011). This means that the behavior and actions of users of smart-grids
are to a large extent coordinated, thus leading to an efficient delivery of energy and less energy losses. In
addition not only intelligent coordination of demand and supply, but especially the connection of renewable
energy sources to smart-grids creates opportunities for more sustainable electrical networks. Currently
renewables can lead to fluctuations when connected to electrical grids and extensive management of supply
and demand is needed. Smart-grids provide measures for mitigating fluctuations by performing real-time
measurements of consumption and power plant outputs, in turn managing the supply and demand.
From a political point of view smart-grids have become more interesting. The European Union has been
making changes to the electricity market to meet several new targets for sustainability and deregulations
(Clastres, 2011). Business as usual created a situation of high economic efficiency leading to low cost of
energy for consumers. However growth of energy demand and concerns on climate change caused decision
makers to recognize the need for more active regulation. There are various market models that showcase
different degrees of market openings and which model used differs strongly per country. Recent research
seems to point towards giving more control to the grid operator as that entity has most control over energy
flows (Integrated Pool Market model) (Stacke, 2008). This creates more optimization opportunities, proper

33

Sidney Niccolson
Thesis Research Project
February 6th, 2017
s1650548 (Leiden) - 4452909 (Delft)

management of renewables and transparent network data. The real-time sensors that smart-grids provide fit
with this market model.
Next to the political aspect, from a socio-technological perspective, smart-grids seem interesting as well due
to the electrification of transport, the changing roles of consumers towards producers and the emergence of
IoT devices. These devices provide readily available interfaces for intercommunication of relevant data, thus
possibly supplying information on the daily usage of the device and its power requirements. In terms of
electrification of transport, more and more electrical vehicles are developed that in theory can also be used to
store energy. In times of over-supply of energy, electrical vehicles may be automatically charged to store the
energy. In addition consumers are now able to buy their own PV cells, hence becoming producers and
consumers at the same time.
To showcase recent interest in the Netherlands, we see that Amsterdam's local electricity network Alliander
has put a large investment in smart-grid technology aimed at the utilization of network sensors and
improvement of domestic energy monitoring to trim peaks of electricity use (Amsterdamsmartcity, 2016).
Matching supply and demand is a key aspect of such a system.
Many aspects of the smart-grids are uncertain, therefore certain questions arise such as: what
implementation efforts are needed to integrate smart-grids in a typical city? What are the current energy
requirements? What is the energy mix? Does a smart-grid lead to lower energy use? What are the patterns of
energy usage in individuals both currently and in the case of smart-grids? What incentives drive efficient
energy usage? What willingness do consumers have to pay more for green energy? It is expected that smart-
grids will lead to lower overall energy usage based on efficient management. For example peak demand
situations can be balanced with smart-monitoring and energy storage. Costs for smart-grids might be high in
the short term with all the investments needed by municipalities and possibly consumers as well. In the long
term it is expected that the costs will be lower due to, for example, energy savings, lower costs of smart-grid
technology and potential return of investments. Also less tangible developments such as increased knowledge
on smart-grids by learning by doing, knowledge sharing may lead to lower costs for installation and
maintenance. Although smart-grids offers potentially a more sustainable electricity network, the questions
around the actual implementations cannot be answered with a single one size fits all solution, and ABMS
might help in answering questions on the dynamics of an electrical network.

5.2 Conceptual MAIA-model development: MAIA structures applied

The model that is going to be developed serves mainly the function of instructing the basics on how to
develop a MAIA model with regards to the platform, however it is important to still include aspects such as
heterogeneity, randomness and agent behaviors. It is also interesting to see what a simple model can describe
for conventional and smart-grid based networks. We define the model according to the structures of the
MAIA theoretical framework and provide extensions with as goal to go from a simple model towards a
slightly more complex one. Assumptions are made to simplify and to set boundaries for the ABM. We depict
agents in italic, MAIA concepts capitalized, attributes and physical components capitalized without spaces.

constructing a basic model on a conventional grid [scenario 1]
As mentioned a conventional grid is relatively inflexible, demand varies on a daily, weekly, seasonal basis.
Supply varies as well and in most cases inflexible power plants are used to supply a base load. For instance

34

Sidney Niccolson
Thesis Research Project
February 6th, 2017
s1650548 (Leiden) - 4452909 (Delft)

nuclear power plants (class 2) have high costs if they have to shutdown, so they tend to be on all the time.
Others such as coal or gas fired power plants (class 1) are more flexible and can follow demand.
Renewable based power plants (class 3) are intermittent and can drive oversupply at times (Balancing
Mechanism Reporting Service, 2016). See figure 5.1 to showcase how grid supply and demand fluctuations
take place in a month in UK.

Figure 5.1: Statistics of the supply and demand in UK in December 2012. Coal/Gas follow demand and nuclear provides a base load. If wind energy is high coal/gas
plants tend to shut down. (Source: Balancing Mechanism Reporting Service, 2016)

Let's simplify the model that is going to be built and assume the electrical grid only supports a single
hypothetical town in the Netherlands of 100 inhabitants. In turn omit any complicated technical aspects of
grids and set the time scale to a daily basis. The model should run for a year that is 365 ticks ('days') and is
focused on effects of consumer behavior rather than technological developmental changes of the grid. It is
important to account for weekly and seasonal changes of demand in this case. The total daily demand will be
correlated according to the season and week. Supply will be provided by power plants of only class 1 and 2.
Renewable-based power plants will be omitted, but citizens may own their own PV systems. Assumptions
will be made based on sources from the United States and countries in West-Europe. To clarify the aim is to
discuss how AMIE can be used to develop models and as a case we will study the impact of PV use in
neighborhoods by consumers. The commercial sector is included, but their role in this model is relatively
small.

35

Sidney Niccolson
Thesis Research Project
February 6th, 2017
s1650548 (Leiden) - 4452909 (Delft)

the collective structure
The Collective Structure represents only composite agents namely active citizens, passive citizens, and three
other agents representing a public-commercial-industrial sector, a nuclear and a gas/coal based powerplant
company. Active citizens and passive citizens both represent an average household of 5 persons. Properties of
active citizens are DailyCitizenElectricityUsage, DailyElectricityGeneration and DailyBalance.
Passive citizens have only the property DailyCitizenElectricityUsage. The commercial sector has the attributes
DailyComElectricityUsage and DaysOfEnergyUse. Powerplant companies own physical components which
will be described in the Physical Structure.

constitutional structure
Citizens enact the Role of either prosumer (active citizens) or consumer (passive citizens). A consumer and
prosumer both use electricity from the grid, while a prosumer also generates electricity. A prosumer owns a
physical component SolarPanelSet. The power plant companies do not take any Role, we assume that they
implicitly are generators of electricity.

physical structure
The nuclear power plant company owns a NuclearPlant and generates the base load. Its property is the
NuclearOutput. Active citizens have as a Physical Component a SolarPanelSet which has as properties the
DailySolarOutput. The gas/coal power plant company has a CombinedPowerPlant as a Physical component
with it's property CombinedOutput. The physical structure also contains the electricity grid, which is public
('Open'). The Grid has as attributes the CurrentAvailableEnergy, NetBalance, AccumulatedOverSupply. The
NetBalance in this model reflects the possible oversupply of the Grid or undersupply. In the case of
undersupply the CombinedPowerPlant needs to satisfy the demand. Figure 5.2 shows a sketch of the model.

Figure 5.2: A rough sketch of the model.

36

Commercial-
industrial-public
sector

Nuclear powerplant

Grid

Supply (Baseload)

Demand

Demand and possible
supply

Active citizen (Prosumer)

Passive citizen (Consumer)

Supply (follow demand)

Gas/Coal powerplant

Demand

Sidney Niccolson
Thesis Research Project
February 6th, 2017
s1650548 (Leiden) - 4452909 (Delft)

operational structure
This model takes a timespan of one year. A tick signifies a day. We assume that not all demand of the town is
from citizens, but a part of the demand is determined by the public-commercial-industrial sector.
Realistically a household would in most cases not meet its own total energy demand with a PV system if we
take into account factors such as the use of heating and the use of cars (David & Mackay, 2009). In this case
the focus is solely on electricity demand excluding the whole of energy demand. If we exclude the whole of
energy demand, solar panels of active citizens can provide more than enough electricity for the demand in
some cases in this model. This is an interesting aspect as cases have already shown that neighborhoods full of
PV systems may provide more than is demanded on some days (H Gharavi, 2011). However if the average
yearly demand is assessed for households, there are many fluctuations in the demand on hourly, daily and
yearly basis. See figure 5.3 for an overview of demand in the total of UK from January to July 2009.

Figure 5.3: Electricity demand in the UK. The weekly cycle shows a lower demand in the weekend and the seasonal cycle shows a higher demand in the winter.
(Source: Balancing Mechanism Reporting Service, 2016)

As we want to account for seasonal and daily changes of demand, extensions will be provided in the next
sections that includes them. However firstly, a static deterministic model is built in which there are no
changes in the system per season or per day. Similarly citizens would have a fixed demand and the same
accounts for the public-commercial-industrial sector. The SolarPanelOutput is realistically for a large part
determined by the sun intensity in a day and the temperature (SunPower, 2016). In the next subsection we
account for those factors as well.
In this model we assume that the base load supplied by the nuclear power plant company provides enough for
the public-commercial-industrial sector. The demand of citizens might put the grid's CurrentAvailableEnergy
in negative within a tick. In turn we assume that the gas/coal power plant company follows the demand, thus
setting the grid's CurrentAvailableEnergy to zero, while updating the gas/coal power plant company
CombinedOutput property and setting the NetBalance property with the value of the old negative

37

Sidney Niccolson
Thesis Research Project
February 6th, 2017
s1650548 (Leiden) - 4452909 (Delft)

CurrentAvailableEnergy. If the CurrentAvailableEnergy is above zero due to active citizens supplying surplus
electricity to the grid, we assume that the gas/coal power plant company shuts down and does not provide
electricity. The CurrentAvailableEnergy would be set to zero at the end of the tick again, but the NetBalance
property will be set with the positive old CurrentAvailableEnergy value for tracking purposes.
In each tick the consumer simply uses electricity from the grid. The active citizen uses electricity and
generates electricity. If the generated electricity is high enough they will not use any electricity from the grid
and supply any surplus electricity. The power plant companies use their physical components to supply
electricity to the grid. Finally the grid monitors the electricity distribution in which the case of oversupply the
property AccumulatedOverSupply will be updated.
We can describe the action situations in a more structured way in the following table. For a detailed
explanation of entity actions refer to the appendix 7 'Entity Actions In Detail' and its subsection 'Scenario 1
Entity Actions Explained'.

Table 5.1: Agent's coupled with action situations and model simulation updates for one tick in order

Agent EntityAction Perfomer (agent or role) System updates (attr.=attributes)

Nuclear Powerplant
company

supplyEnergyAsNucl
earPowerPlant

Nuclear Powerplant
company

++CurrentAvailableEnergy
by attr.: DailyNuclearPowerPlantOutput

Public-commercial-
industrial sector

useEnergyAllSectors Public-commercial-
industrial sector

--CurrentAvailableEnergy
by attr.: DailyComEnergyUsage

Passive citizen useEnergyAsConsu
mer

Consumer --CurrentAvailableEnergy
by attr.: DailyCitizenElectricityUsage

Active citizen generateEnergy Prosumer ++DailyElectricityGeneration
By attr.: DailySolarOutput

Active citizen useEnergyAsProsum
er

Prosumer +-CurrentAvailableEnergy
By attr.: DailyCitizenElectricityUsage &
DailyElectricityGeneration

Gas/coal powerplant
company

followDemand Gas/coal powerplant
company

++CurrentAvailableEnergy (if needed)
by attr.: DailyGasCoalPowerPlantOutput
+-NetBalance (depending on oversupply
or undersupply)

Grid monitorDistribution Grid ++AccumulatedOverSupply (if occurred)
0 = CurrentAvailableEnergy (at end of
each tick to zero)

evaluative structure
It is expected that their might be short periods within ticks of power shortages in the case that there are not
enough active citizens, at the end of each tick this shortage is offset by load following if necessary. The initial
distribution of active and passive citizens determine whether or not their will be power shortage or
oversupply of energy for this simple case. We want to analyze the changes of energy flows on a daily and
yearly basis. In general in ABMS, thorough analyses should be done in the evaluation of the model, including
multiple experimental runs, parameter sweeps, more in-depth tracking of agents. Please refer to chapter 7 for
recommendations for improvement of this model for more information.

38

Sidney Niccolson
Thesis Research Project
February 6th, 2017
s1650548 (Leiden) - 4452909 (Delft)

5.3 Simulation implementation details

The hypothetical small town model with a population of 100 uses approximately 995.6 MWh a year (PSO
Oklahoma, 2016). Based upon the town's demand we can calculate that 27.3 Kwh per entity is demanded in
total on average (995.6 MWh/365 days=2.73 MWh, 2.73/100 entities=0.0273 Mwh), considering the
simplified model (PSO Oklahoma, 2016). To validate the magnitude of household (citizens) demand another
source is used that explains that on average a household uses 7200 kilowatt-hours per year in the USA
(ucsusa, 2016), that is on average 19.7 Kwh per day excluding seasonal changes. In the Netherlands the
situation is slightly different as gas is mostly used directly as a source for heating, thus less electricity is
needed for heating. We take the number from NUON (one of the dutch electricity companies) for a typical
household of 5 persons with three kids, the average electricity use is 12 Kwh a day (Milieu Centraal, 2016).
We assume 24 panels with a average output of 14 KWh per day (Understand Solar, 2016). In terms of supply
995.6 Mwh should be supplied at minimum in the given year.

testing the model
As mentioned a deterministic model is developed at first, in which in a later stage we are going to include
demand and supply dynamics. In this deterministic model we specify the number of agents in the system in a
fixed matter. We want to sketch the situation in which we can see small oversupply, due to the PV system. In
turn in the extension we are going to change the parameters with uncertainty and supply/demand changes.
With fixed parameters we can calculate the following expected outputs:

• The town: the grid should supply in a given year 995.6 Mwh in total. That is 2730 Kwh per day on
average (995.6 MWh a year/365 days=2.73 MWh per day).

• Demand public-commercial-industrial sector: as mentioned this sector is not the focus, hence we will
view the entities making up the sector as a single agent. The public-commercial-industrial sector uses
63% of the demand (Glass for Europe, 2016). This is a crude percentage as it reflects the total of
energy not only electricity and includes actually everything (e.g. transportation) except households.
However for the sake of simplicity this sector would demand .63*2730 = 1719.9 Kwh per day.

• Supply nuclear power plant: To offset the demand of the public-commercial-industrial sector we
assume they supply 110% of that amount. That is 1891.89 Kwh per day (1.1*1719.9). The
CurrentAvailableEnergy of the grid is now +171.99 Kwh (1891.89-1719.9) within a tick.

• Demand households: for the validation of the initial model, we assume a distribution of 75 active and
25 passive citizens. Thus 25*12 Kwh per day is 300 Kwh per day as demand per passive citizen. We
assume oversupply for the PV system as of now, which we could say that prosumers supply 2 Kwh per
agent per day (14-12=2) to the grid. 75*2 is 150 Kwh supply per day.

• Expected output: An oversupply of energy on a daily basis. After the consumers used electricity from
the Grid the CurrentAvailableEnergy is -128.01 Kwh (+171.99-300=-128.01). This is offset by the
oversupply of 150 Kwh leading to a small oversupply of 21.99 Kwh per day. Calculating this through
all the days of the year we get to an accumulated oversupply value of 8026.35 Kwh in a year which
should be showcased in the property AccumulatedOverSupply. The gasCoalPowerPlant will not be
used in this case, although the entity action has been defined in case of undersupply. See section 5.4
for simulation results of this model.

39

Sidney Niccolson
Thesis Research Project
February 6th, 2017
s1650548 (Leiden) - 4452909 (Delft)

Particular in the supply and demand parts we want to introduce heterogeneity. Other scenarios can be
developed after the first model. Scenarios that adjust parameters such as the amount of active and passive
citizens, the powerplant outputs and DailySolarOutputs, the DailyEnergyUsage by citizens. See figure 5.4 for a
visual depiction of the model implementation details, according to the MAIA structures.

40

Collective structure
● ActiveCitizen

Property:
-DailyCitizenElectricityUsage,
-dailyElectricityGeneration
-DailyBalance
PossibleRole:
-prosumer

● PassiveCitizen
PossibleRole:
-consumer
Property:
-DailyCitizenElectricityUsage

● gasCoalPowerPlantCompany
Physical component:
-CombinedPowerPlant

● NuclearPowerPlantCompany
Physical component:
-NuclearPlant

● AllSector
Property:
-DailyComElectricityUsage
-DaysOfEnergyUse

Physical Structure
● SolarPanelSet

Property:
-dailySolarOutput
Type:
-Private (fenced)

● NuclearPlant
Property:
-NuclearOutput
Type:
-Private (fenced)

● Grid
Property:
-CurrentAvailableEnergy
-NetBalance
-AccumulatedOverSupply
Type:
-Public (open)

● CombinedPlant
Property:
CombinedOutput
Type:
-Private (fenced)

Ontological Structure (attributes)
● DailySolarOutput (default = 14)
● DailyCitizenElectricityUsage (default = 12)
● DailyElectricityGeneration (default = 0)
● CurrentAvailableEnergy (default = 0)
● NetBalance (default = 0)
● DaysOfEnergyUse (default = 0)
● DailyComElectricityUsage (default = 1719.9)
● NuclearOutput (default = 1891.89)
● CombinedOutput (default = 0)
● AccumulatedOverSupply (default = 0)

Has access to physical components

Linkage
of attributes

Operational Structure
EntityActions:
● SupplyEnergyAsNuclearPowerPlant

Performer:
-NuclearPowerPlantCompany

● UseEnergyAllSectors
Performer:
AllSector

● UseEnergyAsConsumer
Performer:
consumer

● GenerateEnergyAsProsumer
Performer:
prosumer

● UseEnergyAsProsumer
Performer:
prosumer

● MonitorDistribution
Performer:
Grid

● FollowDemand
Performer:
gasCoalPowerPlantCompany

Ontological Structure (Natural lang conditions &
statements)
Refer to appendix “Scenario 1 entity actions explained”

Specific action statements

Performs

Constitutional structure
● Prosumer

Physical component:
SolarPanelSet

● Consumer

Enact roles

Performs

Linkage
of attributes

Figure 5.4: MAIA Implementation details

Sidney Niccolson
Thesis Research Project
February 6th, 2017
s1650548 (Leiden) - 4452909 (Delft)

The following subsection elaborates on extensions of scenario 1, followed by scenario 2 and 3. In this stage
the model will implement more aspects of ABMS such as variety, randomness and a multitude of attributes
effecting the system as a whole. Those attributes should reflect the daily cycle, weekly cycle and seasonal cycle
of demand and supply variations. In turn the Grid's NetBalance will be influenced considerably. Chapter 5.4
will illustrate the results from these scenarios.

demand decrease in sectors in weekends [extension scenario 1]
The public-commercial-industrial sector (named as AllSector in the platform) is a composite agent,
containing institutions. Concerning the weekly cycle these institutions tend to have less demand in the
weekends. The reason for this is that commercial and some public (e.g. Universities) sectors are closed
(Energy, Environment and Policy, 2016). The attribute of the public-commercial-industrial sector
DaysOfEnergyUse specifies the day in the week. This ranges from 0-6 in which 5 and 6 depict the weekend.
For now we assume that 2% less electricity will be used in the weekends from the grid. See appendix 7 'Entity
Actions In Detail' and the table A7.4 'entity action extension (Demand decrease in sectors in weekends)' for
details.

seasonal weather effects on demand [extension scenario 1]
As shown in figure 5.3, the demand is influenced by seasonal weather variations. There is typically more
usage in the winter than in the summer in Europe. For the Netherlands we can break down the seasonal
weather variations in four seasons (fall, winter, spring, summer). We assume that the winter and fall has
more than the average demand of electricity. And summer and spring less than the average demand. As a tick
signifies a single day, the breakdown is as follows:

• Ticks 0-88, represents the fall
• Ticks 89-177, represents the winter
• Ticks 178-270, represents the spring
• Ticks 271-364, represents the summer

To implement this feature, an additional attribute SeasonCoefficient is set for agents using electricity. This
coefficient represents a factor value, in the model we specify that the coefficient is in fall 1.05 (5% increase),
winter 1.1 (10% increase), spring 0.95 (5% decrease), summer 0,9 (10% decrease) respectively. Please refer to
appendix 7 'Entity Actions In Detail' table A7.5 for the specific entity action adaptations.

variation in demand per day per citizen [extension scenario 1]
Due to the fact that there are differences per day in the use of electricity per citizen, there should be a way to
reflect these fluctuations in the model. The simplified assumption is made that the variation embodies a
maximum of 20% difference of demand for citizens. This means that the range minding the default value of
12 Kwh per day can be between 9.6 and 14.4 Kwh per day. Refer to appendix 7 'Entity Actions In Detail' table
A7.6 for the implementation.

variation in solar panel output per citizen [extension scenario 1]
As mentioned solar panels do not generate the same amount of electricity everyday, it's output depends on a
variety of factors such as temperature, location, type of solar panel, cloudiness (SunPower, 2016). If
temperatures are too high a solar panel can become inefficient, on the other hand in the winter there is less

41

Sidney Niccolson
Thesis Research Project
February 6th, 2017
s1650548 (Leiden) - 4452909 (Delft)

sun hours during a day. Similarly to the variation in demand per day per citizen, we can specify a range of
variations while omitting too many technical details. if the DailySolarOutput is on average 14 Kwh, we
assume that the output can vary by 10%, which is between 12.6 Kwh a day and 15,4 Kwh a day. Appendix
'Entity Actions In Detail' table A7.7 elaborates on the details of the extension.

variation in initial demand per citizen [extension scenario 1]
Realistically the usage is different per household as every household does not live in the same type of built
environment with the same set of electrical devices. Additionally the solar panels types may be different per
citizens. With the application platform it is possible to specify an initial variation for the agents. In this case
initial properties are added that define the initial property of the specific agent. In this way the model
accounts indirectly for heterogeneity in agent's properties. These variations has impact on the variation in
demand per day per citizen and the variation in SolarPanelOutput per citizen. For instance, a specific active
Citizen might have by default a demand of 15 Kwh/day and in the Role of prosumer a SolarPanelOutput of
13.5 Kwh/day. Considering the variations that we specified as model extensions, what the exact global output
of the system will be during a day is uncertain. If we have 75 activeCitizen's with different initial values and
daily variations of demand, the impact on the Grid NetBalance cannot be readily predicted. Additionally
adjusting the parameters such as the distribution of activeCitizens in the town, would result in a completely
different outcome. This showcases the benefit of ABMS as it is possible to develop different scenario's with
different parameters and assess emergent behavior or system-wide outcomes.

subsidy for solar panels in households [scenario 2]
Subsidies for solar panel are seen in this model as incentives for citizens to invest in solar panels. Thus having
subsidy in the model reflects indirectly a larger amount of citizens enacting the role of prosumer. As no
monetary values are implemented in the model, we assume that passiveCitizens have a degree of willingness
to invest in PV systems. WillingnessToInvest can be allocated as a Personal Value property of passiveCitizens
with a scale from 0 to 9. We could specify a new agent (e.g. a govermentRepresentative) that defines the
subsidy, however to keep the model simple we specify a 'policy' property for the Grid called FeedInTariff. The
FeedInTariff property can be either false or true and represents a payment made to citizens for generating
their own energy. The payment is not directly implemented in the model, but we assume that the FeedInTariff
policy is driving the use of solar panel's for electricity generation. Thus as a precondition for passiveCitizens
to enact the role of prosumer, the model implements that if the WillingnessToInvest is higher than 7 and
FeedInTariff is true, passiveCitizens will generate their own electricity. If the WillingnessToInvest is too low
we could specify that as long the FeedInTariff is in effect the WillingnessToInvest increases each tick as it
becomes more and more favorable for those consumers to adapt as well in the future. See appendix 7
'Scenario 2 Entity Actions Explained' table A7.8 for more information on the scenario 2 implementation.

scenario 3 widespread adaptation of smart-meters [scenario 3]
Providing subsidy for households leads to an increase in fluctuations in the Grid, as more agent's generate
electricity and feed surplus electricity into the Grid. Cases of oversupply may be prevented by implementing
smart-meters in households. As mentioned in the introduction to the case, smart-meters can provide data on
real-time consumption and power plant outputs. Considering the model one may argue that citizens with
smart-meters are aware if there is oversupply or undersupply in the Grid. A simple economic based

42

Sidney Niccolson
Thesis Research Project
February 6th, 2017
s1650548 (Leiden) - 4452909 (Delft)

assumption can be made that in cases of oversupply, usually driven by renewable energy, the price of
electricity is low even up to the point of negative prices. In the case of undersupply the electricity price is
high, because the demand is higher than the supply at that given point. The basis of this notion is that prices
in the power market are typically determined by supply and demand (Clean Energy Wire, 2016). The
dynamics of oversupply and undersupply leads to behavioral changes of agents, because they might use less
electricity when undersupply is apparent due to high prices of electricity. In turn there will be more use of
electricity when the price is low in the case of oversupply. To translate this in the model, it is possible to
include an additional Physical Component, the SmartMeter, for citizens. The SmartMeter monitors the
CurrentAvailableEnergy of the grid. This feature can be implemented within the 'use of electricity' entity
actions of citizens. In turn if the Grid's CurrentAvailableEnergy property falls below zero, we speak of an
undersupply. The assumption is made that Citizens will use 30% less energy than normal. If the
CurrentAvailableEnergy property is more than zero (oversupply) we adjust the behavior of the citizens to use
30% more electricity. With this implementation citizens adapt to the available electricity on the Grid. See
appendix 7 “Scenario 3 Entity Actions Explained” table A7.9 for a detailed description of the Entity Actions
adjustments.

5.4 Simulation results

Scenario 1 showcased a basic model of supply and demand, followed by extensions. Scenario 2 incorporated
adaptation of more and more consumers enacting the role of prosumers, while scenario 3 integrated the
notion of smart-grids. This section presents the results of these scenarios.

scenario 1 deterministic model results
The following plots shown in figure 5.5 are generated and saved under the Evaluative Structure package
generated after any simulation. As explained in the software functionality, by default a CSV is constructed
that tracks all agent properties during simulation. This CSV can be used for further detailed analysis.

Figure 5.5: Generated plots. Because this is a deterministic model, the plots only show linearity. Analyzing the results of the left plot, we see that the expected output
described in 'testing the model' is met by these results.

43

Sidney Niccolson
Thesis Research Project
February 6th, 2017
s1650548 (Leiden) - 4452909 (Delft)

assessing the model results with extensions
Minding the initialization settings specified in the Dynamic GUI, the results of the simulation of the scenario
1 model with extensions are as follows:

• Figure 5.6. DailySolarOutput for agent prosumer ID 929338653 and Daily Citizen electricity demand
for agent activeCitizen ID 1995265320 per day (tick).

Figure 5.6: Variations in supply and demand of agent’s in scenario 1

• Figure 5.7: Grid’s NetBalance and FollowDemand parameter by gasCoalPowerPlant.

Figure 5.7: (Left) Grid NetBalance. (Right) gasCoalPowerPlant output. In the first two seasons an undersupply is apparent while in the last two seasons
oversupply. The output of the gasCoalPowerPlant reflects the load following of demand. The smaller peaks in the NetBalance figure, those below zero,

show the decrease of demand in weekends. While above zero the lowest points represents the decrease in weekends.

44

Sidney Niccolson
Thesis Research Project
February 6th, 2017
s1650548 (Leiden) - 4452909 (Delft)

comparison results scenario 1, 2 and 3
In essence, scenario 2 and 3 are extensions to the basic model as well. In turn we can evaluate the differences
in NetBalance output per scenario.
See figure 5.8 for a comparison between scenario 1 and 2. Scenario 2 shows an increase of oversupply.

Figure 5.8: (left) results from scenario 1. (right) results from scenario 2.
Figure 5.9 shows that the implementation of smart-metering leads to less extreme fluctuations and supply
meets the demand more closely.

Figure 5.9: (left) Results from scenario 2. (right) results from scenario 3.
 In scenario 3 there are still cases of under/over supply, however the magnitude is much smaller.

In the Reflection (chapter 7) section proposals are given on how this case study model can be improved or
extended. The following chapter showcases how a simulation can be implemented in the AMIE software.

45

Sidney Niccolson
Thesis Research Project
February 6th, 2017
s1650548 (Leiden) - 4452909 (Delft)

6 Tutorial for AMIE test-users
In this tutorial, scenario 1 of the model was used as an example. Please start the AMIE software by opening
the executable. We will go through the implementation of the model in the platform in a step by step manner.
If it is preferable to show any log messages, the tool can be opened by a command prompt with the
parameters -consolelog. Once the application is opened the following screen is visible in figure 6.1:

Figure 6.1: the default screen of the MAIA tool. The top bar shows a set of buttons. Only the create model, produce code and the play button (green) are relevant in
this section. The left pane shows the package explorer (Project Explorer) in which ABMS projects can be made. The middle pane is for display of editors or Java

code. The right pane is an information panel for objects. The bottom pane is showcases general errors or warnings. Upon the start of a simulation (when the play
button is pressed) another screen is visible in the bottom pane showing run time information which is defined as the “console”.

46

Sidney Niccolson
Thesis Research Project
February 6th, 2017
s1650548 (Leiden) - 4452909 (Delft)

step 1: create the model skeleton
The top left button in figure 6.1 is the create model button. Once clicked a small GUI pops up in which the
project name and model name can be specified. See figure 6.2.

Figure 6.2: creating the basic model skeleton.

step 2: open the model editor [emfforms]
Once finish is clicked, the Project Explorer will show the project and inside that 'folder' resides the basic
model skeleton. By Double-clicking on it, the editor can be opened which is needed to fill in model
information. Alternatively right-clicking the file and selecting open with.. > 'MAIA EMF generic editor
(recommended)' will open the editor as well.

47

Sidney Niccolson
Thesis Research Project
February 6th, 2017
s1650548 (Leiden) - 4452909 (Delft)

step 3: use the editor to fill in model information
Once the editor is open, a symbol saying MAIA is visible. See figure 6.3.

Figure 6.3: The MAIA EMF generic editor. Left pane showcases any MAIA objects users want to create or adjust according to MAIA structures. Right pane is for
actual user input.

The MAIA structures become visible by right-clicking the MAIA object. Clicking on a structure will create the
structure for the model. In this tutorial only a Collective Structure example will be given. Figure 6.4 on the
next page shows the agent activeCitizen in the Collective Structure.

48

Sidney Niccolson
Thesis Research Project
February 6th, 2017
s1650548 (Leiden) - 4452909 (Delft)

Figure 6.4: The construction of the active citizen. The right pane showcases the possible role this agent might enact, but as this is a scrollable editor users can fill in
all agent related data. Values are generally filled in as default values and can be adjusted later on in the dynamic GUI. Additionally three buttons are visible on the
right pane. The left one is adding an existing attribute. The middle is creating an attribute from scratch. The right button is for deleting an attribute. If you want to

change an attribute double-clicking the attribute allows for adjustments.

With this editor users can create their MAIA-based ABM by simply filling in the boxes with the information
of their model. It is advised to end filling in the model with the Operational Structure as that combines all
inputs defined in the other structures. The Ontological Structure is used as a container for agent attributes
and entity actions which can be allocated to specific agents in the Collective Structure, Constitutional
Structure or Physical Structure.

49

Sidney Niccolson
Thesis Research Project
February 6th, 2017
s1650548 (Leiden) - 4452909 (Delft)

step 4: produce the model simulation code
Once the model is completely filled in, the user can view the model in the original XML format. Right-click in
the Project Explorer on the model > open with.. > text editor. This will show a new text editor as shown in
figure 6.5.

Figure 6.5: The “backbone” of the model. This information is used by the platform to produce code.

Once the model is completed, the Produce Code button can be selected from the top bar of the tool (see figure
6.1). This allows for the creation of a simulation experiment. Similarly to the Create Model button the
Produce Code button will open up a small GUI as shown in figure 6.6.

Figure 6.6: the GUI for producing code.

50

Sidney Niccolson
Thesis Research Project
February 6th, 2017
s1650548 (Leiden) - 4452909 (Delft)

step 5: fill in runtime experiment data
Once the finish button has been pressed (figure 6.6), code is generated on the fly. In addition the Dynamic
GUI is shown, that can be used to supply runtime information. See figure 6.7 below.

Figure 6.7: The Dynamic GUI. Users can fill in their number of agents, ticks (input required) in the General tab. The random seed settings can be used to replicate
any experiment if a seed is set. The Initialization tabs can be used (optional input) to specify initial variation in agent attributes. The Action Orders tab (input

required) is used to specify the order of entity actions. The visualizations tab (optional input) can be used to automatically generate plots of runtime results, such as
ticks VS agent attributes.

51

Sidney Niccolson
Thesis Research Project
February 6th, 2017
s1650548 (Leiden) - 4452909 (Delft)

In figure 6.8 an overview of the entity actions order for this specific case study.

Figure 6.8: Action Order tab for specifying entity actions orders.

52

Sidney Niccolson
Thesis Research Project
February 6th, 2017
s1650548 (Leiden) - 4452909 (Delft)

step 6: execute simulation
The Project Explorer will show a new project once all the necessary code has been generated. See figure 6.9.

Figure 6.9: The left figure shows the Project Explorer and all generated code inside packages. The log package contains a log text file containing information on the
code generation process. The right figure highlights the simulationRun.java code. This code signifies the main simulation described in section 4.2.1 the procedural

semantics. If this is selected users can start their simulation by pressing the play (green) button in the top panel.

step 7: evaluate results
Once the simulation is started, the 'console' will be shown displaying run time information. See figure 6.10.

Figure 6.10: Runtime information.

As mentioned earlier, in the Visualization tab of the Dynamic GUI, users can specify plots to be generated
during a simulation. These plots are saved under the Evaluative Structure package in the Project Explorer
(users need to refresh in the top-left menu option to show them after simulation).

53

Sidney Niccolson
Thesis Research Project
February 6th, 2017
s1650548 (Leiden) - 4452909 (Delft)

7 Discussion and Conclusion

7.1 Overview

In this research project we addressed the development of a decision-support tool for the analyses of STS with
respect to ABMS. The increasingly larger and complex systems of today's world makes modeling and
simulation a significant challenge. Regardless of the challenges, the potential of ABMS has become more and
more apparent due to ICT developments, ranging from improvements in computational power to
development of IoT devices that transmit real-time data.
The research presented in this thesis revolves around the development of a proof of concept that embraces the
concepts of MDSD and automatic code generation. The research that has driven this development is the
MAIA theoretical framework. MAIA addressed the usefulness of conceptual models and meta-models for
ABMS in relation to STS (Amineh Ghorbani, 2013). The broader context around the research is aimed to
provide a platform that brings ABMS within reach for stakeholders, thereby focusing on the usability aspect.
Hence a practical approach was taken that elaborates on the technical requirements and implementation
details needed to proceed from a MAIA conceptual model towards an actual Agent-based simulation. To
decompose the research objective and tackle challenges during the research the following research questions
were defined.

1. Main research question: How can a platform for rapid development of Agent-based Models and
Simulations that utilizes Model Driven Software Development be realized, using a high-level
language?

2. Subquestion: What software modules are needed to develop the platform?
3. Subquestion: How can these modules be interlinked, to bring about a workflow-based application?
4. Subquestion:What steps are needed in order to translate socio-technical conceptual models into

simulations?
The first subquestion is concerned with the software modules related to MDSD, that is the ingredients needed
to develop the Agent-based Model-driven Integrated Environment. The second subquestion is aimed at
connecting these ingredients/modules together to bring about a platform for model to simulation
transformation. The last question concerns how to use the platform, in turn how MAIA relates to ABMS and
how application parameters relate to the MAIA framework. We will answer the subquestions in the following
sections. In turn the main question will be answered taking the subquestions into account.

7.2 Research Outcomes

7.2.1 Research question 2 [components]

The MAIA framework served as a useful framework to integrate in the decision support tool, due to the
structured breakdown of the dimensions of STS and the comprehensive documentation on the MAIA-based
meta-model. In addition to the methodology on conceptual modeling of STS provided by MAIA, the MAIA
meta-model addresses the operational aspects required to translate a conceptual model into an ABMS.
A MDSD approach using MDA represents benefits in software engineering practices, which encompasses the
standardization of software development and the reuse of components. It provides a platform for high-level
software design that corresponds directly with actual software implementations. The programming language

54

Sidney Niccolson
Thesis Research Project
February 6th, 2017
s1650548 (Leiden) - 4452909 (Delft)

Java coupled with Eclipse provides sufficient libraries that incorporate MDA, such as the Eclipse Modeling
Framework. Additionally software development was relatively effective when using the Eclipse Rich Client
Platform and supporting Java graphics libraries.

7.2.2 Research question 3 [connection of components - workflow]

With MDSD there is a need for meta-models, protocols and transformation platforms. AMIE incorporates the
MAIA meta-model as an EMF core model. EMF protocols are used to expose the MAIA-EMF core model to
an editor allowing for the creation of MAIA instances. A MAIA instance is in essence a XML file, which is
used by the Java Emitter Templates engine connected with MAIA-EMF core libraries to bring about Agent-
based code generation. The Eclipse Rich Client Platform provided the architecture to realize the needs for
MAIA, EMF and JET integration. Custom Java implementations in RCP was needed to allow for
functionalities such as invoking model creation and code generation, but also the development of the
Dynamic GUI needed to retrieve experiment related user input.

7.2.3 Research question 4 [conceptual models towards simulations]

A conceptual STS model is in essence a high-level description of the system under study. As mentioned
earlier a high-level description is not enough to bring about ABMS. MAIA provides a structured framework
for the development of conceptual models, while at the same time providing the aspects needed for
translation to low-level languages. AMIE leverages the latter point, in order to realize a practical approach
from model towards simulation. The case study followed by the AMIE tutorial showed the steps needed from
conceptual model, to implementation details, to model integration and simulation in AMIE.

7.2.4 research question 1 [AMIE]

The development of AMIE showed that it is possible to incorporate ABMS related meta-models in a Model-
driven Architecture. This study presents a practical methodology for the translation of Computation
Independent Models to Platform Specific Models. In regard to this thesis study one may argue that MDSD is
valuable for ABMS. However MDSD requires standardized formats such as the MDA. In addition it requires
programming languages that support the notion of MDSD. Unfortunate not all programming languages
support MDSD. Java is in that sense a forerunner, but this is also accountable to the various Eclipse
Frameworks that are based on that language.

7.3 Contribution of the thesis study

7.3.1 Participatory ABMS

The overarching context of this research revolves around the notion of bringing ABMS within the reach of
stakeholders. The developed decision-support tool provides an integrated environment for creating models
and simulations for STS. With the integration of conceptual modeling and translation towards simulation,
this platform serves as an advancement towards the realization of participatory ABMS.
The following features of the application make the tool useful for participatory ABMS:

• The tool is a cross platform software application, hence users are not only limited to the Windows
Operation System, but can use Linux or Mac as well.

55

Sidney Niccolson
Thesis Research Project
February 6th, 2017
s1650548 (Leiden) - 4452909 (Delft)

• The MAIA framework embedded in the platform provides a common language between stakeholders.
MAIA is described in a high-level language, thus stakeholders with various backgrounds can more
easily construct a conceptual model of a specific STS case according to the MAIA structures. This
conceptual model can be used for a large extent directly in the platform to construct the instance
model for simulation purposes.

• Instance models can be easily shared between users. If a model is finalized a .MAIA XML file is
created. This file can be shared throughout different users and multiple versions can be created if
desired.

• If model files are shared it is also important that ABMS experiments can be replicated, even if
random functions are sometimes used. Thus, a random seed can be set in the Dynamic Gui in order
to run the exact same simulation multiple times.

• The integrated environment to construct models and use those models to create simulations, allows
for a structured ABMS process. As previously mentioned, ABM modelers tend to mix model with
simulation development with no clear boundary. The environment the platform provides is inherently
structured and requires users to create Agent-based Models and Simulations in a step-by-step
manner.

7.3.2 Scientific contribution

software engineering
From a software engineering perspective new knowledge can be gained as this project tries to integrate
model-driven development in ABMS. Additionally Agent-based modeling and simulation has been for many
years only accessible to researchers experienced in programming. The active involvement of stakeholders
might improve Agent-based models due to the added expert information. Including a more detailed picture
for instance of technology compositions, current and/or needed infrastructure, consumer expectations,
norms and values. The latter includes the explicit incorporation of the heterogeneous set of perspectives of
stakeholders. Hence a multi-disciplinary approach that combines concepts of IE, social science and ICT is
achieved. AMIE sets itself apart from the conceptual modeling efforts provided by OperA, easyABMS and
INGENIAS through the practical approach of translation of conceptual models to simulations. It is therefore
comparable with the GAMA platform as is it enables users with limited experience to use a generic tool to
bring about ABMS. Additionally AMIE is focused on specifically the construction of agent-based models of
socio-technical systems. Concentrating on STS allows for the use of a common language (ontology) such as
MAIA.

industrial ecology
IE is a field that does not yet utilize ICT to its full extent (Davis et al., 2010). However within the field of IE
the issues and challenges around the understanding and shaping of socio-technical systems has been
recognized. The development of a platform for ABMS with respect to STS might aid to the research that has
been done in this domain. This research showed how AMIE and the case study can enhance three key
concepts of IE namely:

• Systematizing patterns of energy use. Minimize energy loss by simulation of widespread adaptation of
smart-meters as showed in the case study.

56

Sidney Niccolson
Thesis Research Project
February 6th, 2017
s1650548 (Leiden) - 4452909 (Delft)

• Aligning policy to conform with long term industrial system evolution. By creating a decision support
system, policies and industrial systems can be better aligned through new insights retrieved from
ABMS.

• Creating new action-coordinating structures, communicative linkages, and information. The decision
support tool has the potential to bring stakeholders together with the use of the MAIA framework. In
addition novel information can be retrieved from the construction of models and simulations.

7.3.3 Societal contribution

With the advent of ICT in recent years, the playing field in terms of technology and innovation has been
changing rapidly. In addition the way people use technology changes. Traditionally engineers develop
technical artifacts from their perspective. The way these artifacts are going to be utilized is for a large part
assumed. Concepts such as the rebound effect is not readily assessed beforehand. Hence this interplay
between technological and social aspects might become more apparent with participatory ABMS. The
ultimate goal is to bring advanced ICT (e.g. simulations) capabilities within the reach of key decision makers.
ABMS is currently a scientific tool, but has huge potential as a decision support tool for decision makers.
Generally speaking, if the barrier to utilize advanced ICT can be lowered, more stakeholders can be involved,
thus they can contribute to improving our understanding of complex systems. Meaning that information is
potentially more easily shared and common languages arise in which different stakeholders perspectives can
be aligned. In addition simulations of complex systems with the use of machine learning, real-time data can
assists decision makers to accommodate policies that enable novel coordination efforts in order to steer
societies towards sustainable, resilient communities.

7.4 Reflection and future research

This section reflects on the usability of AMIE and addresses recommendations for future research.

7.4.1 Technical limitations

In order to address what the drivers and barriers are in terms of the developed platform, aspects that
encourage and enable participatory ABMS are viewed as drivers and technical limitations of the tool as
barriers. The following technical limitations were defined:

• Not all MAIA concepts are completely implemented in the software application. Appendix 5 describes
the platform implementations of MAIA concepts through a set of tables. Certain aspects such as Multi
Criteria Decision Making are not readily implemented. Additionally in the Operational Environment
only a definition of sequence plans (entity actions) are with the current version possible. For instance
a choice plan (Amineh Ghorbani, 2013) cannot be implemented as there is no function to randomize
plans.

• A subset of the Java programming language is needed for Entity Actions. The platform is developed
for researchers with limited programming experience, however for more complex features of a model
such as the entity actions the Java programming language is required. Appendix 7 describes the Java
programming language details for the tool. Although the barrier is lower than for full fledged ABMS
software such as NetLogo, a comprehensive explanation was needed for defining entity actions as the
default model editor does not provide functions to define them in a more user-friendly way.

57

Sidney Niccolson
Thesis Research Project
February 6th, 2017
s1650548 (Leiden) - 4452909 (Delft)

• Along the line of the previous point, another limitation is that only single statements are currently
allowed for entity actions. For instance if there are two preconditions for an entity action of an agent
they should be defined in a single statement with Java based operators. The editor allows for multiple
statements, however this typically causes errors during code generation.

• Automatic visualizations are limited to generated plots of attributes specific to a single agent.
Meaning that it is not possible to select an attribute of one agent and cross-match that with an
attribute of another agent. However, ticks can always be selected in combination with an attribute of
an agent. In addition agent tracking is limited, because the exact agent of a specific type is selected
randomly by default. By setting a seed it is possible to plot all attributes of a single agent if desired,
but in turn which agent selected is randomly determined. An option is to make multiple selections
with respect to attributes and agents, in turn the same attributes of multiple agents can be analyzed as
each selection will select a different agent.

The technical limitations described above may serve as barriers towards using the software application. For
instance a high learning curve might be apparent for users when defining entity actions if the programming
experience is very limited. The evaluation of a model is now limited to the CSV and the automatic
visualization option. Experienced programmers may be able to work with the CSV to filter out desired
information, however this barrier can be lowered if more options for evaluations are implemented- such as
the export of CSV for detailed simulation selections (e.g. only attributes for one agent type). The MAIA
concepts that are not implemented may be implemented in later versions of the tool, but currently this a
barrier for more complex and large MAIA-based ABMS. Below are a few proposals on how these barriers can
be mitigated:

• Addition of functionalities such as more MAIA concept integrations using JET. As mentioned not all
MAIA concepts are implemented, although the mechanisms are in place to realize more MAIA
integrations in the future.

• A more user-friendly entity action implementation that lowers the barrier for non-experienced
programmers. This can be achieved through changes in the MAIA EMF core model and JET. In which
default Java notations currently required will be automatically generated.

• Visualizations implementations can be improved by more transparent agent (ID) tracking
mechanisms or additional implementations for cross-matching of agent attributes with other agent
attributes.

7.4.2 Use of run-time visualizations

The library used for generating visualizations is JfreeChart. JfreeChart provides an API for developing a wide
range of plots, however JfreeChart is inherently designed for static graphs for reporting purposes (Java Zone,
2016). Real-time visualizations are possible through manipulation of the API, however the performance is
relatively poor. Alternative libraries such as VisualVM (VisualVM, 2016) are designed for optimized real-time
plotting and may as well be integrated in a future version of the tool. This would allow for more visual
analyses during the simulation. Eclipse also provides extensions for visualizations such as the Graphical
Editing Framework (GEF, 2016), Zest (Zest, 2016), Birt (Eclipse Birt, 2016).

58

Sidney Niccolson
Thesis Research Project
February 6th, 2017
s1650548 (Leiden) - 4452909 (Delft)

7.4.3 Comprehensive software evaluation and validation

This thesis study emerged from the need to provide methodologies and tools for participatory ABMS. Many
aspects should be considered in doing so and software evaluation and validation is important, unfortunately a
comprehensive software evaluation and validation was outside of the scope of the thesis project. For future
research it might be interesting to have case studies on large projects with various stakeholders in order to
thoroughly test the tool. Additionally this can make the tool more robust if feedback is taken into account for
future versions. Moreover, usability testing is a common way to test the ease-of-use of a program usually by
doing tests with real users. The developer in turn evaluates what problems and confusions they experience or
may encounter. This research focuses mainly on the development of a proof of concept and not a final
application product, hence there are aside from the technical limitations other barriers apparent in the
application. However it is evident that the tool has been developed for a specific purpose and audience, thus
criteria can be developed based on that. The target audience encompasses decision-makers, wide range of
scientists (modelers in IE or STS, domain experts), businesses and IE students. This reflects the evaluative
nature and scope as the focus is mainly on users with limited programming experience and partially on
developers that wish to continue the tool development. A user is typically a person who downloads, installs,
configures the application. A developer is a person who writes code that changes the software. Based on the
target audience some evaluative statements and questions can be defined that may be used for evaluation and
validation (Software Sustainability Institute, 2016):

• visibility of system status. Does it give users appropriate feedback within reasonable time?
• error prevention. Does it prevent errors in the first place or help users avoid making them?
• match between system and the real world. Does it speak the user’s language and make

information appear in a natural and logical order? Are implementation-specific details hidden from
the user?

• user control and freedom. Does it provide clearly marked exits, undo and redo?
• recognition rather than recall. Does it make objects, actions and options visible and reduce

the amount of information a user has to remember?
• flexibility and efficiency of use. Does it offer short-cuts and support macros for frequently

done action sequences?
• Are the binary releases packaged for immediate use in a suitable archive format, e.g. .tar.gz, .zip or

.jar for Linux, .zip, .jar or .exe for Windows?
• Is the user doc online? Are there any supporting tutorials? Do these list the versions they apply to?.
• Is there design documentation available? How accurate and understandable is it?

These questions cannot be easily answered, and a thorough test phase would be required. Potentially a forum-
like setup would be needed to answer user-related questions.

7.4.4 More advanced GUI for model editing

Currently the default EMFForms from the Eclipse Modeling Framework is used for users to edit models.
EMFForms also provides an API for developing custom editors and this creates the opportunity to make a
more user-friendly editor in line with MAIA. Next to a custom implementation of EMFForms it is also
possible to create a complete different infrastructure such as a Web-based platform for model creation

59

Sidney Niccolson
Thesis Research Project
February 6th, 2017
s1650548 (Leiden) - 4452909 (Delft)

(Amineh Ghorbani, 2013). In order to build such an infrastructure knowledge of XML creation and parsing
would be needed to make it functional with the simulation and code generation part of the platform.

7.4.5 Code generation for other platforms

The code generated in the MAIA Model & Simulation platform is platform specific. In theory the
infrastructure defined in the Materials and Methodology chapter can be used for code generation for other
platforms. The specific formats that would be required are dependent on the other ABMS platforms, however
the benefit for doing so would be that users can use more extensive platforms that provide more features such
as real-time visualizations or parameter sweeps.

7.4.6 Model extension proposals

The Agent-based model scenarios developed in the chapter 5 do not necessarily reflect the most realistic
simulations of electrical grids, but showcases relevant aspects that ought to be considered when developing
models for electrical grids. Scenario 1 emphasized more on the platform implementations needed to
construct a basic model, while scenarios 2 and 3 went more into detail how the model behaves under
different circumstances considering incentives and innovation. Yet chapter 5 has served mainly as an
introduction to go from model to simulation. In the end an ABM should include many more components and
interactions. Thus the following exploratory concepts can be defined that model, test and/or implement:

• variability in distribution of active citizens (prosumers) and passive citizens

(consumers). In the model implementation a fixed amount of active citizens and passive citizens is
used. It might be interesting to do more experiments while changing these distributions.

• use of real-time data. With the advent of IoT devices such as Arduino based monitoring systems,
more data is available than ever before. It is theoretically possible to read in real-time data on the fly
during the simulation. Although this would require a person with sufficient Java programming
experience to implement. The platform can in this case be used to develop the basic skeleton of the
model in terms of MAIA structures, however the details of the entity action should be manually
inserted. Meaning that an algorithm would need to be developed that reads in relevant data and in
turn defines certain parameters of the model (e.g. CitizenElectricityUsage).

• stakeholder engagement in the modeling and simulation process. Because the MAIA
theoretical framework is aimed at stakeholder involvement, it would make sense to involve domain
experts in the process of developing the model. This leads potentially to a model more close to reality
and a more comprehensive validation process can take place.

• differences in daily power plant supply and implementation of class 3 plants. In the
current model power plants are relatively static only supplying a fixed amount of electricity or
following demand. It would be interesting to see more dynamics included such as renewable power
plants that create larger effects on the system due to their intermittent nature.

• energy storage facilities in case of oversupply by solar panels & virtual power

plants. Electrical vehicle's share in the market is increasing and new innovative technology emerges
for energy storage. Thus the model could be extended to include energy storage in cases of
oversupply. Additionally the concept of Virtual Power Plants is strongly linked with energy storage,

60

Sidney Niccolson
Thesis Research Project
February 6th, 2017
s1650548 (Leiden) - 4452909 (Delft)

demand management and renewable energy sources. It would be interesting to see how this concept
can be integrated in the model.

• decrease in solar panel efficiency. Solar panel efficiency typically decreases in time and it
would make sense to include the decrease of efficiency. However as this simulation is aimed to assess
a single year the efficiency decrease is negligible. Extending the model to run for multiple years
would be of added value in this case, yet this would require more dynamics such as technological
developments.

• breakdown of sectors as separate agents. Currently, there is no breakdown in the sectors and
it would be interesting to make a distinction of the different types of sectors.

• inclusion of electricity price and ticks depicting hours. Another interesting extension
would be to include electricity price and to see if the consumers/prosumers would behave differently
to the fluctuations in price. It could potentially be useful to change the ticks from daily to hourly.
Hence making it a more complex model that would include the variations in the electricity price per
hour, electricity usage and electricity generation.

61

Sidney Niccolson
Thesis Research Project
February 6th, 2017
s1650548 (Leiden) - 4452909 (Delft)

"It is now highly feasible to take care of everybody on Earth at a higher standard of living than any have ever
known. It no longer has to be you or me. Selfishness is unnecessary. War is obsolete. It is a matter of

converting our high technology from WEAPONRY to LIVINGRY."
-Buckminster Fuller

62

Sidney Niccolson
Thesis Research Project
February 6th, 2017
s1650548 (Leiden) - 4452909 (Delft)

Glossary: An introduction to IE
IE embodies the improvement of metabolic pathways of processes and methods in our society in order to
meet current and future needs. The name “IE” comes from the analogy between natural systems (biosphere)
and industrial systems (technosphere) and that this analogy can be used as an aid in understanding how to
design sustainable industrial systems. The term biosphere was first broad up by geologist Eduard Suess in
1875, he defined the biosphere as the place on Earth's surface where life dwells. V. I. Vernadsky (1863–1945)
stated that ecology is the science of the biosphere. Moreover Vernadsky places life at the center of the history
and functioning of the planet's chemistry. Vernadsky was among the first to argue that organisms actively
shaped the atmosphere, oceans and the earth's landscape (Haplopoda, 2001). The biosphere is not merely the
Earth's surface where life dwells, Vernadsky tackles the idea of life also influencing its environment by
interaction either between organism or organism influencing inorganic compounds. The technosphere can be
defined as the world created by man, such as constructions, machines or waste dumps (Richards, 2009).
According to Robert Ayers (1989) both the biosphere and the technosphere are systems for the
transformation of materials. Ayres gives the example of organisms consuming resources (food), digesting
them and producing waste, whereas industries consume material resources, process them and exerts
products and waste (Ayres, 2004). The similarity between biosphere and technosphere is based upon the idea
that both organisms and firms change the composition of resources in the world. The analogy can be put to
productive use by applying lessons from the biosphere to the technosphere and hence accelerating its
evolution to a more sustainable and resource efficient state (Ayres, 1989). However Ayres also states that the
value of the analogy is limited. This limited value is due to key concepts of the biosphere that does directly
correlate with the technosphere. Nevertheless assessing how the biosphere functions and how we can learn
from it is of great value. The key principles of industrial ecology can be summarized as follows (O’Rourke,
Connelly, & Koshland, 1996):

• Improving the metabolic pathways of processes and methods.
• Creating loop closing industrial ecosystems, which means having as less as possible input and output

materials in a system.
• Dematerialize products, for example having a product with the same function with lesser materials.

However this is not always necessarily good, because some materials can be scarce or
environmentally unfriendly and can therefore have a stronger negative impact on the ecosystem
when used in products than others.

• Systematizing patterns of energy use. Minimize energy consumption by for instance energy
cascading, meaning using as much of the embodied energy of products at there end of life stage for
other products with the least of energy loss.

• Balancing industrial input and output to natural ecosystem capacity.
• Aligning policy to conform with long term industrial system evolution.
• Creating new action-coordinating structures, communicative linkages, and information.

These principles can be are linked to various other related concepts, frameworks and definitions such as the
Triple Bottom Line, Life Cycle Thinking, Circular Economy, Closed-loop Supply Chains, Industrial Symbiosis.

63

Sidney Niccolson
Thesis Research Project
February 6th, 2017
s1650548 (Leiden) - 4452909 (Delft)

In addition certain unexpected indirect effects can have significant environmental consequences, in turn the
rebound effects and ripple effects are taking into consideration within the field of IE. The terms that are
described in this chapter are shortly addressed in the section below, because they highlight important pieces
to the field of IE and to the thesis topic.

Triple Bottom Line and Sustainable Development

The Triple Bottom Line (TBL) similar to the field IE came to existence under growing concerns on economic
growth and its social and environmental consequences. TBL is more focused on guidelines for corporations
to ensure that companies not only aim at adding economic value, but also include social and environmental
dimensions (Elkington, 2001). The 3P formulation: Planet, People, Profit was developed in which companies
ideally should make sure that all three P's are respected in their business models.
Next to TBL, Sustainable Development (SD) is a term widely used in the field of IE. Although SD has been
defined in many ways, the most famous definition came from the Brundtland report in 1987 (Brundtland,
1987): “Sustainable development is development that meets the needs of the present without compromising
the ability of future generations to meet their own needs”. This term addresses societies needs and the
limitations that the environment has to meet those needs.

Life Cycle Thinking

Life cycle thinking is a way to conceptualize environmental issues and how we deal with them, by taking in
account the whole life cycle of products/activities (Heiskanen, 2002). Environmental issues are systems
extending beyond the boundaries of individual companies and Life cycle thinking proves as a way to make
people aware of environmental issues and forces organizations to deal with environmental impacts caused by
the whole product chain instead of the single process the respective organization is involved in. The life cycle
approach (life cycle thinking) emerged as a conceptual model and led to the emergence of instruments and
tools for example Life Cycle Assessment (LCA).

Circular Economy and Closed-loop Supply Chains

Circular Economy is used as a conceptual approach for industrial systems, wherein industrial systems in
general should be restorative or regenerative (The Ellen MacArthur Foundation, 2012). This means a shift
from linear production mechanisms using unsustainable materials and energy sources towards circular
production processes utilizing renewables and minimizing waste through the redesign of materials, products,
systems and business models. Next to the redesign, we can also think of shifts in roles of relevant actors
related to industrial systems such as the role of citizens that may change (Hobson, 2015). These circular
production processes can be seen as a system that implements closed-loop supply chains. Closed-loop supply
chains differ from forward supply chains because in a traditional forward supply chain the customer
functions as the end of the processes, whereas in closed loop supply chain there is value to be recovered from
the consumer (Guide & Wassenhove, 2003). Taking this definition broader, value can be recovered
throughout the production supply chain by utilizing waste and by-products.

64

Sidney Niccolson
Thesis Research Project
February 6th, 2017
s1650548 (Leiden) - 4452909 (Delft)

Industrial Symbiosis

Industrial Symbiosis (IS) is a collaboration between separate organizations involving not only physical
exchange of materials, energy, water, and/or by-products, but also exchange of knowledge and assets. This
exchange of resources in an industrial system can lead to the creation of novel knowledge and this exchange
should be applied in a sustainable, effective and measurable way, with the aim of mutual benefit for the
involved organizations (Chertow, 2000; Lombardi & Laybourn, 2012). IS is more of a practical concept that
can be used by companies to cooperate in turn exchange flows (closing supply chains if possible) and
knowledge.

Rebound effect

The rebound effect is a counteracting effect of improved efficiency of technologies. For example increased
energy efficiency leads to lower costs of energy services and in turn effects consumer behaviour (Herring &
Roy, 2007). Energy saving by increasing efficiency may seem to reduce environmental impact as less
resources would be needed to generate energy, however lower cost of energy services can lead to higher
consumption levels. In this way increased consumption levels can counteract the initial environmental
benefit of more efficient systems. This can be denoted as direct rebound effects, the indirect effect can be
explained in the way that consumers may buy more, more functional or larger products. The rebound effect
not only accounts for energy systems but also for other forms of consumption that can give environmental
problems (Hertwich, 2005).

Ripple effect

The ripple effect is very much in line with the rebound effect that occur in socio-technical systems and can be
explained as:

• Indirect effects that are a consequence of overestimation of technology to mitigate climate issues and
underestimation of environmental impacts (Arvesen et al., 2011).

The use of reductionist approaches with narrow system boundaries and emphasis on technical artefacts led to
an incomplete assessment of social and economic aspects in which technology is embedded. Six issues are
described by Arvesen, Bright & HertWich:

• Transitioning to clean energy causes climate impacts.
• Unclear cost benefits of energy efficiency due to:

◦ negative costs such as market failure (failure of demand), conflicting assumptions of optimal
behaviour according to technician than to individual end-use.

◦ Rebound effect. If there is high price elasticity there is a large rebound effect.
• Fossil fuel with Carbon Capture and Storage (CCS) technology and renewables may lower system

wide effect. If efforts on GHG emissions are hindered by fossil fuel lock-in; CCS will force a longer life
span of fossil fuel usage.

• Lack of absolute decoupling (absolute decrease in impact, if GDP grows). Usually there is relative
decoupling (per unit of product less energy used for example).

• Interconnections of environmental pressures (e.g. high risk of problem shifting). Due to complexity
we tend to implement reductionist approaches.

65

Sidney Niccolson
Thesis Research Project
February 6th, 2017
s1650548 (Leiden) - 4452909 (Delft)

• Underestimation of future demands. New categories of demand arise and grow which cannot be
predicted beforehand.

Relevance of Information Communication Technology (ICT) to IE

Now that these aspects within the field of IE has been described, we can see that many of these conceptual
frameworks and definition intertwine with each other. In this thesis ICT plays a very large part and the
question remains how can ICT contribute to the field of IE and why is it important? The vision of utilizing
Information Technologies within the field of IE was first coined as Industrial Ecology 2.0 by Chris Davis and
colleagues in 2010. With the advent of ICT, sharing information on vast amounts of data has become possible.
The Internet already serves as the medium for knowledge exchange, and some fields in academia have already
taken up the possibilities that current software (open source and licensed) provides. For example Bio-
informatics emerged as a field that combines biological data with computer science to gain a better
understanding of the functions of organisms . It has to be mentioned that appreciable amounts of data
already exists relevant for IE, however that it is largely a challenge of interlinking data. Enabling
collaboration, standardization and dealing with resistance due to privacy issues are key to successfully
reaching a community-driven, collective knowledge web within the field of IE. As mentioned by Chris Davis
creating feedback loops in which information that is gathered can be reused and replicated is of great value.
In addition the quality of information can be improved through continual peer reviews. Concluding that ICT
can contribute to IE in the collection, processing, curating and sharing amounts of data and knowledge.
Unfortunately one may argue that within the field of IE that this can be improved (Davis et al., 2010).
Additionally the way data is generated can be improved by using state of the art IT technologies.

To come back to the notion of socio-technical systems with regard to IE, we could argue that there is an
inherent need to understand and deal with the complex nature of these systems. The complexity embodies
uncertainties that are related to governance, rebound effects, ripple effects. ICT can serve as medium to
model and simulate complexities that may lead to a better understanding and clearer goals for actors towards
steering socio-technical systems. Ideally moving away from linear to closed loop supply chain while
embracing the concepts of the Circulair Economy, TBL, IS, SD.

66

Sidney Niccolson
Thesis Research Project
February 6th, 2017
s1650548 (Leiden) - 4452909 (Delft)

Appendix 1: An overview of EMF
In this section a short description will be given on EMF terminology. This section might be useful for
developers that want to use EMF.

• EMF model: Is essentially a class-diagram, a simple model of classes and represent data of the
application.

• Class definitions (Java and UML) are represented as complex types definition if using XML
• Attributes (UML) or methods/functions (Java) are represented as nested elements declarations in

XML
• E-core meta-model: A model to describe the meta-information. Which is the MAIA meta-model in

this thesis project.
• Core model: An instantiation of the E-core meta-model is called a core model. These are actual case

studies.
• Eclass: a modeled class (a name to a set of functions together)
• Eattribute: has names and types similar to UML attributes.
• Ereference: the link/association between classes
• Edatatype: can be primitives or object types such as java.util.Date.

E-core models can be developed through Java interfaces, XML schema, UML. With UML you have multiple
options 1 direct editing with the graphical editor, option 2 import from UML (rational Rose).
Other features are persistence (data storage on physical drives) and serialization (translating data or objects
into a state or structure so that it can be stored). This storage is either in a file or transmitted over network
and reconstructed on the opposite end. To create a model with Java, Java interfaces are needed together with
annotations. The serialization of core models for persistence is done by XMI (meta-data exchange). It is a
standard for serializing meta-data. After E-core model construction, Java code is generated. It contains (1)
interface classes and (2) implementation classes (instances)with functions/methods that correspond to those
interface classes. The concept of notifiers is also important, it notifies any users that there is a change in state
(e.g. if there is a set method it changes a variable, a notifier may be called). Also (3) packages (4) factory are
generated. The generated factory includes a create method for each class (instance). Packages are used to
return and set values of attributes/variables. Lastly and (5) XML schema for the model and (6) plugin
manifest file is generated, so the E-core model can be used as an eclipse plugin,
Normally the generation is not enough. It is expected to add methods and instance variables to the code. To
go back to notifiers they do not only observe, but also provide ways to do something with the observed
change that is to extent the behavior (so called adapter's). Automatic generation creates many objects (classes
and other related objects), which can easily be used to create instances. And data storage is done through
resources. EMF is related to the Object Management Group (OMG) in which UML, XMI, MDA are part of.
XMI: connects XML with modeling. XMI is a meta-model in itself in which XML is the instance. Model
Driven Architecture (MDA) is the focus in the OMG group, it is aimed at full life cycle application
development. That is data and application integration, so that formats, languages all connected with each
other true precise mapping.

67

Sidney Niccolson
Thesis Research Project
February 6th, 2017
s1650548 (Leiden) - 4452909 (Delft)

Appendix 2: JET Syntax
Similarly to appendix 1, this section is aimed for programmers that wish to utilize JET and want to
have a better understanding of it. Below a description of JET syntax.

• <%=methodPrefix%> : if you want to generate for instance the Java code "private foo", then in JET it
will be denoted by 'private <%=methodPrefix%> foo'

• <%maia.operationalStructure.Plan entity = (maia.operationalStructure.Plan)argument;%> : object
declaration example (entity).

• <%@ jet package="JETTemplates" class="EntityAction_instance"
imports="maia.physicalStructure.*" %> : output java file with imports

• <%=<object>.<method>%> : for any object to use its methods this is an option
• <% for (Plan plan : entity.getActions()){ %> <%=plan.getName()%> <% }%> : For loop example. In

this case entity is an object ActionSituation.java but that object is of type EList Plan.
• <%maia.operationalStructure.EntityAction test = (EntityAction) entity;%> : class casting without

validation of the object.
• <%if (entity instanceof maia.operationalStructure.EntityAction)

{ maia.operationalStructure.EntityAction test = (maia.operationalStructure.EntityAction) entity;}%>
: class casting with validation of the object.

• <%// get object Plan %> : set comments

68

Sidney Niccolson
Thesis Research Project
February 6th, 2017
s1650548 (Leiden) - 4452909 (Delft)

Appendix 3: Eclipse RCP
Recent Eclipse software packages including the RCP take on a MDSD approach. Thus Eclipse RCP is strongly
dependent on a application model (E4XMI). The application model is made out of visual (windows, parts
views,editors)) and non visual elements (commands, handlers). Each model element is made out of attributes
describing the look and feel of the respective element. However the actual UI widgets are still defined in
source code, which can be displayed in a visual element.
Model elements of the application model are connected to classes by URI's. For Java classes a 'bundleclass'
with prefixes component is used and for resources a 'platform' component is used. Lets assume a part that
contains a URI pointing to a Java class. The Java class contains actual code that make up the logic that is
shown in a part. While the part itself may be embedded in a window layout.

• Windows: are the empty canvasses that can contain other elements
• Parts: UI components which allow to navigate and modify data
• Views: are parts, but are typically used for working on a particular set of data. e.g. the project

explorer can be used to explore projects of the application.
• Editors: are parts used to modify single data elements. e.g. the Java editor is used to edit Java files.

Parts can be assigned to windows or used directly, but they can also be grouped together:
• Part shash container: All children parts are shown at the same time. The container data attribute can

be used to assign a given weight to parts, thus some are then bigger than others.
• Part stack: Has children parts which only one is shown at a given time (has tabs).
• It is also possible to have a part shash container with a part stack in it.

A perspective is a container for sets of parts, for instance for manipulating data one might have a perspective
as well as one for visualizing data. In terms of Java classes, at the moment there is a pointer to a Java class in
the runtime environment an object of that class is made. Commands are used to set actions on events,
however a command is only an abstract explanation of an action, there are no implementation details. The
behavior of a command is described via handler. If a command is selected, the runtime determines the
relevant handler for the command. The handler refers to a specific class (e.g. Menu item with command
reference < command < Handler < Java class).
RCP has many features such as bundling a JRE with the application, and creation of tools for multiple
platforms.

69

Sidney Niccolson
Thesis Research Project
February 6th, 2017
s1650548 (Leiden) - 4452909 (Delft)

Appendix 4: MAIA Concepts & ABMS
The transformation of high level to low level language requires a mapping of MAIA concepts to simulation
modules. Table A4.1 below signifies the simulation elements required in Agent-based models in relation to
MAIA concepts. Beware that not all MAIA concepts are integrated in the tool and that some concepts are
differently handled.

Table A4.1: Linkages of MAIA concepts with ABMS elements (source: (Amineh Ghorbani, 2013))

A further breakdown of each simulation element in relation to MAIA concepts is described below.
• the agent, agent list and action-arena: In MAIA, an agent is a decision making entity. He has

information on physical components (Agent list) and which role he may be performing in the action
arena (environment). He must comply to institutions with respect to whether it is a rule, norm or
shared strategy. In the case of shared strategy, there are no consequences if the institutional
statements are not followed, hence irrational behavior might take place. Additionally an agent may
also perform Multi Criteria Decision Making (MCDA). MCDA is a way of determining preferences
and weighting them next to each other (e.g. what are the agent preferences, what are the properties of
the technical artifact the agents wants, what do other consumers do?). Typically an agent in ABMS

70

Sidney Niccolson
Thesis Research Project
February 6th, 2017
s1650548 (Leiden) - 4452909 (Delft)

has three phases at each time step: entering the simulation (enter), executing its plans (execute),
leaving the arena (exit). Figure A4.1 gives a sketch of an agent and its processes of behavior.

Figure A4.1: Agent's behaviors. The dashed arrow lines denote optional steps taken by agents.

• the order of actions / scheduling mechanism: In order to allow for emergent behavior, agents
do not perform actions in a specific order. The MAIA meta-model does not provide the order of
actions either. The way this step is defined can be different per meta-model, however typically the
order of agents entering the action arena is systematically randomized. In addition agents may or
may not perform actions they come across as this allows for unanticipated behavior. One may argue
that agents should perform their actions simultaneously, however this creates complexities for the
evaluation of the model. Basically the modeler wants to track how the system evolves over time, and
if agents perform their actions simultaneous it becomes quite difficult to analyze the emergent
behavior.

• spatial and logical representation of agents / the space: In figure A4.1 there are
preconditions and certain institutional responsibilities. This signifies certain operational,
constitutional structures. Constitutional in the sense of institutional statements and operational in
terms of agent behavior according to agent's plans (which may or may not involve institutional
responsibility). The physical structure is also denoted in this simulation element, this can be visual
elements such as coordinates that place agents in the action arena. But can also be definitions on
public components that are shared between agents.

71

Has a plan (unique
to each agent)

Agent X

Want to do an action
-According to roles
which may or may not
be associated to
institutions

Checks
preconditions for
that action

Proceeds to the type of
action or does not
perform an action

Performs MCDA

Has institutional
responsibility

Weights preferences
against instutional
statements (ADICO)

Enters Executes

Exits

Sidney Niccolson
Thesis Research Project
February 6th, 2017
s1650548 (Leiden) - 4452909 (Delft)

• the main model: Signifies the initialization process (e.g. what starting variables do agents possess)
and uses the scheduler mechanism to control actions taken in each time step.

• the evaluative structure: This structure is not represented by one of the simulation elements as
it is for a large part outside of the scope of simulation. However the monitoring of variables and
parameters (e.g. starting cash balances and how it evolves) and an analysis of relations between
variables and agents is important and is specified during conceptualization.

72

Sidney Niccolson
Thesis Research Project
February 6th, 2017
s1650548 (Leiden) - 4452909 (Delft)

Appendix 5: Platform Implementations of MAIA Concepts
Considering the limited time frame of the thesis project, not all MAIA concepts could be integrated in the
application platform. As showcased with the case study a running simulation can be developed with only a
subset of the MAIA concepts. To provide a clear overview for further extensions a table is constructed that
describes what is readily integrated, what is partially integrated and what should be integrated in the future
in terms of MAIA concepts. For more details on the specific MAIA concepts refer to Dr. Amineh's Ghorbani
dissertation (Amineh Ghorbani, 2013) and the Results chapter of the thesis.

Table A5.1: The MAIA collective structure

MAIA Concept MAIA attribute Completely
integrated in
platform

Integrated in
JET
code
generation

Represented
in EMF, but
to be
developed for
platform

Notes and remarks

Agent Name √
Agent Personal value X Properties can embody

personal values

Agent Physical
component

√

Agent Possible Role √
Agent Intrinsic behavior √* *Implicitly implemented in

agent entity actions. Do not
directly fill this in with the
GUI, but through entity
actions.

Agent Property √
Agent Information √ Assigns a value to a

variable that the agent
already has. Can also be
simulated through Physical
component (OPEN)
attribute as done in the case
study.

Agent Decision X Can be simulated through
entity actions

MCDA All X Can be simulated, but a
comprehensive entity
action condition needed

Personal Value All √

73

Sidney Niccolson
Thesis Research Project
February 6th, 2017
s1650548 (Leiden) - 4452909 (Delft)

Table A5.2: The MAIA constitutional structure

MAIA Concept MAIA attribute Completely
integrated in
platform

Integrated in
JET
code
generation

Represented
in EMF, but
to be
developed for
platform

Notes and remarks

Role Name √

Role Objective √ Not used in
operationalization of
simulation. Specifically the
entryCondition method
generated is not called.

Role Institutional
capability

√* *Implicitly implemented in
role entity actions. Do not
directly fill this in with the
GUI, but through entity
actions.

Role Institution (typeof
strategy)

X

Role Entrycondition X Can be implemented in
precondition of role entity
action

Role Physical
component

√

Role Information X Can be simulated through
Physical component
(OPEN) attribute

Table A5.3: The MAIA physical structure

MAIA Concept MAIA attribute Completely
integrated in
platform

Integrated in
JET
code
generation

Represented
in EMF, but
to be
developed for
platform

Notes and remarks

Physical
component

Name √

Physical
component

Type √

Physical
component

Affordance X

Physical
component

Behaviour X Can be simulated through
entity actions in case of

74

Sidney Niccolson
Thesis Research Project
February 6th, 2017
s1650548 (Leiden) - 4452909 (Delft)

OPEN component type

Physical
component

Property √

Connection Begin node/end
node

X

Composition Begin node/end
node

X

Table A5.4: The MAIA ontological structure

MAIA Concept MAIA attribute Completely
integrated in
platform

Integrated in
JET
code
generation

Represented
in EMF, but
to be
developed for
platform

Notes and remarks

Natural long
condition
(statements)

All √ This is key for complex
operationalization as the
full Java language can be
used to denote statements.

Number property All √
String property All √
Boolean property All √
Formula All (Andformula,

orFormula etc.)
√ Used by objectives

Table A5.5: The MAIA operational structure

MAIA Concept MAIA attribute Completely
integrated in
platform

Integrated in
JET
code
generation

Represented
in EMF, but
to be
developed for
platform

Notes and remarks

Entity action Name √

Entity action Action body X Not needed as the name of
entity action already
signifies the action body

Entity action Post condition *√ *Only a single statement
allowed, use “;” to denote
multiple or use Java
operators

Entity action Pre condition *√ *Only a single statement
allowed, use Java operators

75

Sidney Niccolson
Thesis Research Project
February 6th, 2017
s1650548 (Leiden) - 4452909 (Delft)

Entity action Post condition not
do

*√ *Only a single statement
allowed, use “;” to denote
multiple or use Java
operators

Entity action Performer √
Entity action Role enactment X Linking of agents and roles

are already integrated if
performer is specified as a
role type

Entity action Decision making X Can be simulated through
natural lang conditions

Entity action Institution X

Plan All types √ X Only one type of plan is
implemented: the sequence
plan. In which order of
entity actions can be
specified in the GUI

Action situation All types X Same as the plan remark,
entity actions orders can be
specified sequential. Who
performs what is not
deterministic as the Agent
list shuffle each tick.

Action arena All types X Same as the plan remark,
entity actions orders can be
specified sequential. Who
performs what is not
deterministic as the Agent
list shuffle each tick.

Table A5.6: The MAIA evaluative structure.
MAIA Concept MAIA attribute Completely

integrated in
platform

Integrated in
JET
code
generation

Represented
in EMF, but
to be
developed for
platform

Notes and remarks

Ontological
concept variable

All X

Property variable All √ Properties dynamics can be
tracked through either
specifying visualizations in
the GUI or through the
default generated CSV.

76

Sidney Niccolson
Thesis Research Project
February 6th, 2017
s1650548 (Leiden) - 4452909 (Delft)

Personal value
variable

All X As mentioned in the
collective structure table,
the personal values can be
represented as Agent
attributes.

77

Sidney Niccolson
Thesis Research Project
February 6th, 2017
s1650548 (Leiden) - 4452909 (Delft)

Appendix 6: Development MAIA-based RCP
This section serves as a means to address some important aspects for the tool development. As mentioned in
the Materials chapter it is a RCP application. The development environment is:

• Eclipse SDK Version: Neon.1 (4.6.1)
• Build id: M20160907-1200
• JRE used: Java 8 oracle

The documentation that follows is mainly based on the following third party tutorials:
• [1] Vogella's Rich Client Platform Tutorial
• [2] Diksmetric's tutorial eclipse RCP e4 with 3.x views like project explorer, properties
• [3] EMF Forms Editors
• [4] Eclipse multi-platform's tutorial (A Brief Overview of Building at Eclipse)
• [5] Creating Eclipse wizards

All these tutorials can be found on https://github.com/SidneyNiccolson/RCPplatform or online.

Take away message from tutorial [1]:
A RCP can be created straight away through the wizard for RCP app creation or
an Eclipse plugin can be created first, in turn secondly a product is created, thirdly a feature should be
created that holds the plugin (enter the feature as content of the product). Inside of the plugin resides the
application.xml. As feature will be content to the product, you would have to change the product
configuration to feature and include at contents the features we need (remove version dependencies).

A combination of tutorial [1] and tutorial [2] has been used to construct the basic application. If in tutorial
[2] the hello RCP is missing just use the headless RCP template and find the Java files needed online for hello
RCP template. Below the steps taken to built the application:
1: Install everything with tutorial [1]
2: Follow tutorial [2]
3: Make sure that dependencies are met, and you can export the product.
4: Follow tutorial [3], but add your own emf core model (MAIA) to the product (see next bullet points).

• Change the extentions in plugin.xml to “maia” instead of “task”.
• If not yet installed, install Eclipse modeling framework SDK
• install EMF plugin for Eclipse
• Create a new "Empty EMF Project" in eclipse (I called mine 'MAIA', but I suppose you can name it

what you want)
• -Copy 'tools.ecore (or what ever .ecore file I sent you previously) ' to the 'model' folder of the new

project (I renamed it to maia.ecore, but I don't think that is significant)
• Create a new EMF Generator Model (right-click the model folder > new > other > find EMF

Generator Model in the list; locate it in the model folder, and point it to the .ecore in the workspace)
• It automatically opens the genmodel; right-click the top element (maia), and select (subsequently)

"Generate Model Code", "Generate Edit Code", "Generate Editor Code".

78

Sidney Niccolson
Thesis Research Project
February 6th, 2017
s1650548 (Leiden) - 4452909 (Delft)

• Add all MAIA folders to the dependencies tab of the plugin.xml of your product
• Satisfy all dependencies through validation of the product (RCP function). You can add them either

in feature.xml (advised) or add dependencies in plugin.xml.
5: Create a multi-platform feature: This is based on tutorial [4].
6: Implement logic such as wizards that can create models or generate code functionalities: This is based on
tutorial [5] (also see subsection “Creating wizards” in this appendix).

Common errors:

• general missing dependencies. Error: 'Application Id not found'. Means that the application
dependencies is not added to the product dependencies (not in sync). To solve this in a quick way you
can run configurations and select the application and add required plugins. This is not the right
solution as you should add all these dependencies. In the product content tab insert this:

Create a feature project. In the feature.xml add the plugins! (creation of feature project is taken from
Vogella tutorial), and add these dependencies (there are more than only these, see GitHub source
code):

As a check always validate your product(RCP has an option for doing so), to see if dependencies are
missing. Workaround method: to find the right dependencies, you can use run configurations and
select certain plugins. If that make the application working than you are missing some that are by

79

Sidney Niccolson
Thesis Research Project
February 6th, 2017
s1650548 (Leiden) - 4452909 (Delft)

default de-selected there (you can reset run configurations by deleting the entry and restarting the
product). Therefore you need to add iteratively dependencies in one of the three directories or all (it
is recommended to start with only feature.xml and check validation of export product each time to
make sure the dependencies are met). For example if you want to include EMFforms then there are
many org.eclipse.emfforms.* libraries that need to be added.
Below a list of important dependencies:

org.eclipse.core.*
org.eclipse.sdk > for JET options
org.eclipse.jdt.*
org.eclipse.search
org.eclipse.ui.console
org.eclipse.ui.intro
org.eclipse.debug.ui

• multi-platform errors: while exporting to multiple platforms, I encountered an issue with Java
version (errorcode: 13). this is probably due to the Eclipse product using a different Java version by
default. This can be also 32bit or 64bit. As a solution you can try another windows version export
than the one used or client side solution is to adjust the eclipse.ini to change the JVM used by the
system.

• product works in run-time environment, but not as exported application: This can be
solved by adding to the built tab in the manifest.mf a library called “.” (simply dot). By having this
you can link it to the src folder which is needed by the application.

• unable to load class org.eclipse.emfforms.spi.editor.genericeditor: This means that we
need to find this class somehow, meaning we have to add ECP dependencies. At least the following
one: install ecp SDK e4 (target feature) from the ECP/emfforms site (tutorial [3]). Add this
dependency to the plugin itself (we have three dependency entries plugin.xml, feature.xml, product
(contents)).

• jet folders are not created error: Files used for populating projects can not have the same
name (capital or non-capital). There for the Jet templates need to have as package a non-used folder
name.

Creation of wizards and sending additional files:

Based on tutorial [5] the take away message is:
It is required to create an Eclipse plugin that uses the org.eclipse.ui.newWizards extension point. You can
define your own category or use an existing one once you find the category ID. To create a new project wizard
rather than a new resource wizard, you need to set the "project=true". Also, the plugin must contain a class
that implement org.eclipse.ui.INewWizard. Clicking on the class link from the plugin.xml editor will do the
trick. That class must do All The Work in the performFinish override, and must return true to indicate that it
actually did its thing and the wizard can close. This is where you create files, directories, set natures, and so
forth.

80

Sidney Niccolson
Thesis Research Project
February 6th, 2017
s1650548 (Leiden) - 4452909 (Delft)

Useful starting code:
//This is where I want the JET project to be created by default, by overriding performFinish you can create custom
projects

@Override
public boolean performFinish() {

//set monitor to track progress
NullProgressMonitor pm = new NullProgressMonitor();
// create empty project
IWorkspaceRoot root = ResourcesPlugin.getWorkspace().getRoot();
IProject project = root.getProject("MyProject");
try {

project.create(pm);
project.open(pm);

} catch (CoreException e) {
// TODO Auto-generated catch block
e.printStackTrace();

}
try {
//set Java nature

 IProjectDescription desc = project.getDescription();
 desc.setNatureIds(new String[] {
 JavaCore.NATURE_ID});
 project.setDescription(desc, pm);

//set output folder for classess (bin folder)
 IJavaProject javaProj = JavaCore.create(project);
 IFolder binDir = project.getFolder("bin");
 IPath binPath = binDir.getFullPath();
 javaProj.setOutputLocation(binPath, null);
 //custom libaries to add to the builtpath
 String filename = "org.eclipse.emf.common-2.9.0.v20130528-0742.jar";
 InputStream is;
 is = new BufferedInputStream(new FileInputStream(filename));
 IFile file = project.getFile(filename);
 file.create(is, false, null);

 IPath path = file.getFullPath();
 //add custom folder
 IFolder folder = project.getFolder("templates");
 IFile file2 = folder.getFile("hello.txtjet");
 if (!folder.exists())

 folder.create(IResource.NONE, true, null);
 if (!file2.exists()) {

 byte[] bytes = "<%@ jet package=\"Templates\" class=\"Role_instances\"
%>package constitutionalStructure;public class inspectionOfficer extends Role{}".getBytes();

 InputStream source = new ByteArrayInputStream(bytes);
 file2.create(source, IResource.NONE, null);
 }

//set JRE
 Set<IClasspathEntry> entries = new HashSet<IClasspathEntry>();

 entries.addAll(Arrays.asList(javaProj.getRawClasspath()));

 IVMInstall vmInstall= JavaRuntime.getDefaultVMInstall();

 LibraryLocation[] locations= JavaRuntime.getLibraryLocations(vmInstall);

 for (LibraryLocation element : locations) {

 entries.add(JavaCore.newLibraryEntry(element.getSystemLibraryPath(), null, null));
 entries.add(JavaCore.newLibraryEntry(path, null, null));
 }

 javaProj.setRawClasspath(entries.toArray(new IClasspathEntry[entries.size()]), pm);
} catch (CoreException e) {

// TODO Auto-generated catch block
e.printStackTrace();

}
 //IProject newProject = getNewProject();

81

Sidney Niccolson
Thesis Research Project
February 6th, 2017
s1650548 (Leiden) - 4452909 (Delft)

catch (FileNotFoundException e) {
// TODO Auto-generated catch block
e.printStackTrace();
System.out.println("Working Directory = " +

 System.getProperty("user.dir"));
}
return true;

}

Adding files to root directory of RCP app

Sometimes we want to expose files to the RCP app to be used by any wizards. In the development of the
decision support tool for instance the default MAIA skeleton for construction of instance models needs to be
exposed to the RCP app. Below an example of how files can be exposed:
Create a new feature [say org.me.helloworld.files.feature] Under the new feature, we create a file called
"hi.html" and a folder called "myfiles" In the "build.properties" page remove "bin.includes = feature.xml" line,
then add "root=file:hi.html,myfiles".
Finally, we go back to add "org.me.helloworld.files.feature" feature to the product file of the RCP app using
"Contents" tab. Then Export the RCP product, now we can see "hi.html and myfiles folder" under RCP
product root directory.

Create output for potential error messages and error prevention on Windows

You can start in cmd and then <tool>.exe -consolelog to get the output of the application.
Make sure that the MAIA tool resides in a folder path with no empty spaces in directory names.

Default plotting mechanism library

A simulation project constructed with the decision support tool has one single dependency, automatically
added by the RCP application itself. That library is JfreeChart and is used for the tool's integrated default
plotting mechanisms.

Important Java classes

There are a few key Java classes that are not part of the default Eclipse RCP implementation, but are part of
the custom logic applied to develop the tool. These classes are also available on
https://github.com/SidneyNiccolson/RCPplatform and can be found in the following folder on GitHub
RCPplatform/workspaceNeon1/ABMplugin.rcp/src. Below a description of these Java classes and their
functions:

• JETTemplates classes (Java dependent classes in figure 3.5): These classes reflect the JET templates
developed with Eclipse-JET. On GitHub the original templates can be found as well. As mentioned in
the Methodology Chapter these classes are part of the MAIA framework and are used during parsing.

• ABMplugin > rcp classes: These classes reflect custom Eclipse RCP implementations based on tutorial
[1] and [2]. The ApplicationWorkbenchWindowAdvisor.java class is important for setting the title of
the and default size of the application. The application.e4xmi is the model of the application it self (as
Eclipse RCP is model-based). ABMplugin.product is the actual product that links all classes together

82

Sidney Niccolson
Thesis Research Project
February 6th, 2017
s1650548 (Leiden) - 4452909 (Delft)

and can be used for export of the application along with run-time configurations. Build.properties
and MANIFEST.MF are Eclipse based configuration files (e.g. for configuring dependencies).

• CreateModel classes: The CreateModelShowWizard.java fires up the GUI for creating models. The
CreateModelPage.java are the actual contents of the GUI. The CreateModelHandler.java implements
all logic needed such as invoking the CreateModelPage.java contents and creating a project with a
basic .maia skeleton.

• PartHandling: The RenderWebPage.java is used in the perspective Webtool for firing up the MAIA
web-tool developed by Dr. Amineh Ghorbani.

• ProduceCode classes: These classes are really the core of the application. The
MainSimulationDialog.java is the Dynamic GUI that takes in dictionaries (HashMaps) created by
reading in MAIA instance model XML data and in turn dynamically creates the user interface. The
ProduceCodeHandler.java generates all code needed for simulation. Hereby it reads in MAIA instance
model XML data, generates MAIA instance code, creates dictionaries for the Dynamic GUI, retrieves
data from the Dynamic GUI and finally constructs the main simulation class. The
ProduceCodePage.java reflects the basic wizard content when the produce code button is launched.
The ProduceCodeShowWizard is used to fire up the small GUI before the Dynamic GUI is invoked
(which is invoked at performFinish() method in ProduceCodeHandler.java).

• MAIA resources (MAIA, MAIA.edit, MAIA.editor): The general MAIA resources (folders) contain the
MAIA EMF based classes. These are dependencies of the application.

• ABM plugin rcp feature and plugin rcp files feature: As the basic MAIA skeleton needs to be supplied
when creating models these features are added to supply that file.

83

Sidney Niccolson
Thesis Research Project
February 6th, 2017
s1650548 (Leiden) - 4452909 (Delft)

Appendix 7: Entity actions in detail
Since entity actions determine the main features of any MAIA-based ABMS, a more detailed explanation will
be given in this section. Entity actions can be assigned to agents (Collective Structure), components (Physical
Structure), roles (Constitutional Structure). Entity actions embodies what each agent does per step (tick).
Every default platform notation (Java based) will be colored blue with a larger font. Every case specific
example will be specified with '<' and '>' symbols. Because this platform is based on the Java language, that
programming language can be used directly.

An introduction to entity actions

The order in what agent performs entity actions is defined in the dynamic GUI. The agent <Worker> enacting
the role of a <Consumer> serves as a simple (though not necessarily realistic) example to describe entity
actions. The <Worker> has as attributes <Money> and <AbleToWork>. In the role <Consumer> the agent
utilizes a car to drive to work. We can specify two entity actions namely <DriveCar> and <Work>. Entity
actions have “preconditions”, “postconditions” and “postconditions not do” and those attributes have
“statements”. We first specify that the <Worker> in the role <Consumer> should <DriveToWork>. A

“precondition” statement may be <Worker.getMoney() - 1000>, the “postconditions” might be

<Consumer.getCar.getGas() – 1 ; <Worker.setAbleToWork(true);>.

A “postcondition not do” would be <Worker.setAbleToWork(false);>.

 In the entity action <Work> the precondition is <Worker.getAbleToWork()> (true or false), a postcondition

might be <Worker.setMoney(Worker.getMoney()+10;)>. The order of the entity actions should be
specified in this case as firstly <DriveToWork> followed by <Work>. Below a table that gives an overview of
this simple case.

Table A7.1: a description of entity actions for a simple hypothetical case study

Agent Role EntityAction Property update

Worker Consumer DriveToWork Gas: decreases
AbleToWork: true/false

Worker XXX Work Money: increases

84

Sidney Niccolson
Thesis Research Project
February 6th, 2017
s1650548 (Leiden) - 4452909 (Delft)

 Below a table of the rules for any statements and examples on how to put statements together.
Table 2: Types of conditions and possible statements as example. Notice that for physical components of the
“OPEN” type these example notation is slightly different (no .get or .set needed).
Type of condition Rules Statement collective structure

agents or roles example
Statement physical
component (OPEN) example

Precondition Can be completely omitted
(default is true at that point).

 Worker.getMoney() >= 1000 Grid.TotalDailySupply >= 3

Postcondition Should always be set.
Specify “;” sign at the end.

Worker.setMoney(Worker.get
Money()+10);
Worker.setAbleToWork(true)
;

Grid.TotalDailySupply =
Gird.TotalDailySupply + 1;

Postcondition not do Can be completely omitted.
Specify “;” sign at the end.

Worker.setMoney(1000); Grid.TotalDailySupply = 3;

In general with the semicolon notation (requirement by default also for one statement) multiple statements
can be defined in the “postcondition” and “postcondition not do”. In the case of precondition no semicolon is
needed at all, but Java operators can be used. Beware that numerical values can be used without any
specification, but letters (denoted in Java as Strings) should be within quotes (e.g. if <Worker> has property

willingness you would denote it as Worker.setWillingness = “High”). For operationalization it is
recommended to capitalize all attributes, as the current platform version does not support non-capitalized
attributes.
The following Java operators can be used inside of statements:

• < : smaller than (use for numerical values). E.g. Worker.getAge() < 10.

• <= : smaller than or equal to (use for numerical values). E.g. Worker.getAge() <= 10.

• > : higher than (use for numerical values). E.g. Worker.getAge() > 10.

• >= : higher than or equal to (user for numerical values). E.g. Worker.getAge() >= 10.

• || : or statement. E.g. Worker.getAge() < 10 || Worker.getMoney() > 1000.

• && : and statement. E.g. Worker.getAge() < 10 && Worker.getMoney() > 1000.

• <attribute>.equals(): Assess if letters (Strings) are the same.

 E.g. Worker.getWillingness().equals(“High”)
• !<attribute>.equals(): Assess if letters (Strings) are not the same.

E.g. !Worker.getWillingness().equals(“Low”)

85

Sidney Niccolson
Thesis Research Project
February 6th, 2017
s1650548 (Leiden) - 4452909 (Delft)

Scenario 1 Entity Actions Explained

The following tables describes how the entity actions are implemented for the case study in scenario 1.

Table A7.3: entity actions for the base scenario

Entity action Performer Statements

supplyEnergyAsNuclearPowerPlant NuclearPowerPlantCompany PostCondition:
//set the starting value of CurrentAvailableEnergy

• Grid.CurrentAvailableEnergy =
nuclearPowerPlantCompany.getNuclearPlant
().getNuclearOutput();

useEnergyAllSectors AllSector PostCondition:
//use energy from the grid

• Grid.CurrentAvailableEnergy =
Grid.CurrentAvailableEnergy –
AllSector.getDailyComElectricityUsage();

useEnergyAsConsumer Consumer PostCondition:
//use energy from the grid

• Grid.CurrentAvailableEnergy =
Grid.CurrentAvailableEnergy -
passiveCitizen.getDailyCitizenElectricityUsa
ge();

generateEnergyAsProsumer Prosumer PostCondition:
//generate energy

• activeCitizen.setDailyElectricityGeneration(p
rosumer.getSolarPanelSet().getDailySolarOu
put());

useEnergyAsProsumer Prosumer PostConditions:
//use from grid if necessary otherwise supply the remainder of the usage

• Grid.CurrentAvailableEnergy =
Grid.CurrentAvailableEnergy -
(activeCitizen.getDailyCitizenElectricityUsa
ge() -
activeCitizen.getDailyElectricityGeneration()
) ;

//update DailyDemandBalance value

• activeCitizen.setDailyDemandBalance(active
Citizen.getDailyElectricityGeneration()-
activeCitizen.getDailyCitizenElectricityUsag
e());

followDemand gasCoalPowerPlantCompany PreCondition:
//check whether it is needed to follow demand

• Grid.CurrentAvailableEnergy <= 0.0
PostConditions:
//set net balance according to current available energy

• Grid.NetBalance =
Grid.CurrentAvailableEnergy;

//update plant output to the demand needed

86

Sidney Niccolson
Thesis Research Project
February 6th, 2017
s1650548 (Leiden) - 4452909 (Delft)

• gasCoalPowerPlantCompany.getCombinedPo
werPlant().setCombinedOutput(-
Grid.CurrentAvailableEnergy);

//simplify the model by simply setting the currentAvailableEnergy to zero

• Grid.CurrentAvailableEnergy = 0;
PostConditions not do:
//reset to plant output as it should not run in this case

• gasCoalPowerPlantCompany.getCombinedPo
werPlant().setCombinedOutput(0);

//set net balance to current available energy

• Grid.NetBalance =
Grid.CurrentAvailableEnergy;

monitorDistribution Grid PreCondition:
//check whether there is oversupply

• Grid.CurrentAvailableEnergy > 0.0
PostCondition:
//set oversupply value as this condition is only executed in case of oversupply

• Grid.AccumulatedOverSupply +=
Grid.CurrentAvailableEnergy;

Table A7.4: entity action extension (Demand decrease in sectors in weekends)

Entity action Performer Statements

useEnergyAllSectors AllSector PreCondition:
//check if it is weekend

AllSector.getDaysOfEnergyUse() >=5
PostConditions:
//use energy from the grid with 5% less demand

• Grid.CurrentAvailableEnergy =
Grid.CurrentAvailableEnergy –
(AllSector.getDailyComElectricityUsage()*0.
95);

//Specify that a day has passed

• AllSector.setDaysOfEnergyUse(AllSector.get
DaysOfEnergyUse()+1);

//Make sure that the days of energy use are reset

• if (AllSector.getDaysOfEnergyUse() >= 7)
{AllSector.setDaysOfEnergyUse(0);};

PostCondition Not Do:
//use energy from the grid (default)

• Grid.CurrentAvailableEnergy =
Grid.CurrentAvailableEnergy –
AllSector.getDailyComElectricityUsage();

//specify that a day has passed

• AllSector.setDaysOfEnergyUse(AllSector.get
DaysOfEnergyUse() + 1);

87

Sidney Niccolson
Thesis Research Project
February 6th, 2017
s1650548 (Leiden) - 4452909 (Delft)

Table A7.5: entity action extension (seasonal weather effects on demand)

Entity action Performer Statements

adaptToSeasonA activeCitizen Precondition:
//if not in summer

• Ticks.getTick() < 271
PostConditions:
//if fall

• if (Ticks.getTick() <= 88)
{activeCitizen.setSeasonCoefficient(1.05);}

//if winter

• else if(Ticks.getTick() > 88 &&
Ticks.getTick() <= 177)
{activeCitizen.setSeasonCoefficient(1.1);}

//if spring

• else if(Ticks.getTick() >= 178)
{activeCitizen.setSeasonCoefficient(0.95);}

PostCondition Not Do:
// if the year has passed just reset the tick, because this model only runs for a
single year

• if (Ticks.getTick() > 365)
{ Ticks.setTick(0); }

//set summer coefficient

• else{activeCitizen.setSeasonCoefficient(0.9)
;}

Attribute SeasonCoefficient (default=1) has been added to the model in this extension. If the
SeasonCoefficient is defined it needs to be used in the useEnergy entity actions of the agents. For example
Grid.CurrentAvailableEnergy = Grid.CurrentAvailableEnergy – activeCitizen.getDailyCitizenElectricityUsage(); is changed to
Grid.CurrentAvailableEnergy = Grid.CurrentAvailableEnergy – (activeCitizen.getDailyCitizenElectricityUsage() *
activeCitizen.getSeasonCoefficient);

This implementation should as a final model be added throughout all the other agent entity actions that
demand electricity.

Table A7.6: entity action extension (Variation in demand per day)

Entity action Performer Statements

dailyVariationA activeCitizen PostConditions:
//specify default value

• double default =
activeCitizen.getIniCitizenElectricityUsage()
;

//create random parameters between 0.8 and 1.2 (coefficient)

• Random randomizer = new Random();
double randomX =
randomizer.nextDouble()*(1.2 - 0.8) + 0.8;

//use the coefficient derived above for setting the electricity usage

• activeCitizen.setDailyCitizenElectricityUsag
e(default*randomX);

88

Sidney Niccolson
Thesis Research Project
February 6th, 2017
s1650548 (Leiden) - 4452909 (Delft)

This implementation should as a final model be added for passiveCitizens as well. There could be an
implementation for the sectors, yet different assumptions can be made on to what extent the usage variates in
a day. An initial property has been added in this case called IniCitizenElectricityUsage defining the initial
property value.

Table A7.7: entity action extension (Variation in solar panel output per citizen)

Entity action Performer Statements

generateEnergyAsProsumer prosumer PostConditions:
//specify default value

• double default =
prosumer.getSolarPanelSet().getIniDailySola
rOutput();

//create random parameters between 0.9 and 1.1 (coefficient)

• Random randomizer = new Random();
double randomX =
randomizer.nextDouble()*(1.1 - 0.9) + 0.9;

//determine electricitygeneration property with coefficient and
SolarPanelOutput

• activeCitizen.getSolarPanelSet.setDailySolar
PanelOutput(default*randomX);

• activeCitizen.setDailyElectricityGeneration(p
rosumer.getSolarPanelSet().getDailySolarOut
put());

Scenario 2 Entity Actions Explained

Two additional properties are added to the model in scenario 2 namely WillingnessToInvest (number
property as personal value: during initialization this range is 0-9) for passiveCitizens and (boolean property:
set to true by default) FeedInTariff for the Grid. Additionally the ElectricityGeneration property is now also
allocated to passiveCitizen instead of only activeCitizen. It is possible to specify a single prosumer role and
integrate the conditions described in scenario2, but for clarity purposes an additional role
prosumerAsPassive is defined. See table below for a description of the new entity action.

Table A7.8: scenario 2

Entity action Performer Statements

generateEnergyAsProsumerPassive prosumerAsPassive PostConditions:
//specify default value

• double default =
prosumerAsPassive.getSolarPanelSet().getIni
DailySolarOutput();

//create random parameters between 0.9 and 1.1 (coefficient)

• Random randomizer = new Random();
double randomX =
randomizer.nextDouble()*(1.1 - 0.9) + 0.9;

//determine electricitygeneration property with coefficient and
SolarPanelOutput

89

Sidney Niccolson
Thesis Research Project
February 6th, 2017
s1650548 (Leiden) - 4452909 (Delft)

• prosumerAsPassive.getSolarPanelSet().setDa
ilySolarPanelOutput(default*randomX);

• passiveCitizen.setDailyElectricityGeneration
(prosumer.getSolarPanelSet().getDailySolarO
utput());

useEnergyAsConsumer consumer PostConditions:
//use from grid if necessary otherwise supply the remainder of the usage

• Grid.CurrentAvailableEnergy =
Grid.CurrentAvailableEnergy -
((passiveCitizen.getDailyCitizenElectricityU
sage()-
passiveCitizen.getDailyElectricityGeneration
()) ;

Scenario 3 Entity Actions Explained

In scenario 3 the SmartMeter Physical Component is added for citizens. In theory the SmartMeter does not
do much other than monitoring the Grid's CurrentAvailableEnergy. A property of the SmartMeter is the
GridBalance that reflects the CurrentAvailableEnergy. The GridBalance determines the behaviour of
electricity usage by citizens. We need to implement this feature in the electricity usage Entity Action, because
during that action the CurrentAvailableEnergy changes. Below in the table a description of a Entity Action
that implements this feature.

Table A7.9: scenario 3

Entity action Performer Statements

useEnergyAsProsumer prosumer PostConditions:
//determine GridBalance property

• activeCitizen.getSmartMeter.setGridBalance(
Grid.CurrentAvailableEnergy);

//determine if GridBalance is positive or negative and implement the usage
accordingly (by adapating the seasonCoefficient)

• If
(activeCitizen.getSmartMeter().getGridBalan
ce() > 0)
{activeCitizen.setSeasonCoefficient(activeCi
tizen.getSeasonCoefficient() + 0.3);}

• else
{activeCitizen.setSeasonCoefficient(activeCi
tizen.getSeasonCoefficient() - 0.3);}

//use from grid if necessary otherwise supply the remainder of the usage

• Grid.CurrentAvailableEnergy =
Grid.CurrentAvailableEnergy -
((activeCitizen.getDailyCitizenElectricityUsa
ge()*activeCitizen.getSeasonCoefficient()) -
activeCitizen.getDailyElectricityGeneration()
) ;

90

Sidney Niccolson
Thesis Research Project
February 6th, 2017
s1650548 (Leiden) - 4452909 (Delft)

 //update DailyDemandBalance value

• activeCitizen.setDailyDemandBalance((activ
eCitizen.getDailyElectricityGeneration()*acti
veCitizen.getSeasonCoefficient())-
activeCitizen.getDailyCitizenElectricityUsag
e());

91

Sidney Niccolson
Thesis Research Project
February 6th, 2017
s1650548 (Leiden) - 4452909 (Delft)

8 References
Aldewereld, H., Boissier, O., Dignum, V., Noriega, P., Padget, J., & others. (2016). Social Coordination Frameworks for

Social Technical Systems.

Allenby, B. R., & Graedel, T. E. (1993). Industrial ecology. Prentice-Hall, Englewood Cliffs, NJ.

Amsterdamsmartcity (2016). Retrieved 18 October, 2016 from
https://amsterdamsmartcity.com/projects/city-zen-smart-grid-in-amsterdam-nieuw-west

Arvesen, A., Bright, R. M., & Hertwich, E. G. (2011). Considering only first-order effects? How simplifications lead to
unrealistic technology optimism in climate change mitigation. Energy Policy, 39(11), 7448–7454.
http://doi.org/10.1016/j.enpol.2011.09.013

Axtell, R. L., Andrews, C. J., & Small, M. J. (2001). Agent-Based Modeling and Industrial Ecology. Journal of Industrial
Ecology, 5(4), 10–13. http://doi.org/10.1162/10881980160084006

Ayres, R. U. (1989). Industrial metabolism. Technology and Environment, 1989, 23–49.

Ayres, R. U. (2004). On the life cycle metaphor: Where ecology and economics diverge. Ecological Economics, 48(4), 425–
438. http://doi.org/10.1016/j.ecolecon.2003.10.018

Balancing Mechanism Reporting Service (2016). Retrieved 18 October, 2016 from
https://www.bmreports.com/bmrs/?q=help/about-us

Bichraoui, N., Guillaume, B., & Halog, a. (2013). Agent-based Modelling Simulation for the Development of an Industrial
Symbiosis - Preliminary Results. Procedia Environmental Sciences, 17, 195–204.
http://doi.org/10.1016/j.proenv.2013.02.029

Borrás, S., & Edler, J. (2014). Introduction: on governance, systems and change. In The Governance of Socio-Technical
Systems Explaining Change. Cheltenham, UK: Edward Elgar Publishing, Inc. Retrieved from
http://www.elgaronline.com/9781784710187.00010.xml

Brundtland, G. H. (1987). Our Common Future: Report of the World Commission on Environment and Development.
Medicine, Conflict and Survival, 4(1), 300. http://doi.org/10.1080/07488008808408783

Chertow, M. R. (2000). Literature and Taxonomy.

Clastres, C. (2011). Smart grids: Another step towards competition, energy security and climate change objectives. Energy
Policy, 39(9), 5399–5408. http://doi.org/10.1016/j.enpol.2011.05.024

Clean Energy Wire (2016). Retrieved 3 October, 2016 from https://www.cleanenergywire.org/factsheets/why-power-prices-
turn-negative

David, C., & Mackay, J. C. (2009). Sustainable Energy — without the hot air.

Davis, C., Nikolic, I., & Dijkema, G. P. J. (2010). Industrial ecology 2.0. Journal of Industrial Ecology, 14(5), 707–726.
http://doi.org/10.1111/j.1530-9290.2010.00281.x

92

Sidney Niccolson
Thesis Research Project
February 6th, 2017
s1650548 (Leiden) - 4452909 (Delft)

Drogoul, A., Amouroux, E., Caillou, P., Gaudou, B., Grignard, A., Marilleau, N., … Zucker, J.-D. (2013). Gama: A spatially
explicit, multi-level, agent-based modeling and simulation platform. In International Conference on Practical
Applications of Agents and Multi-Agent Systems (pp. 271–274).

Eclipse Birt (2016). Retrieved 4 December, 2016 from
http://www.eclipse.org/birt/

Elkington, J. (2001). Enter the Triple Bottom Line. The Triple Bottom Line: Does It All Add Up?, 1(1986), 1–16.
http://doi.org/10.1021/nl034968f

Energy, Environment and Policy (2016). Retrieved 3 October, 2016 from http://euanmearns.com/electricity-supply-and-
demand-for-beginners/

Frank Budinsky, David Steinberg, Ed Merks, Raymond Ellersick, T. J. G. (2003). Eclipse Modeling Framework: A
Developer’s Guide.

García-Magariño, I., Gómez-Sanz, J., & Fuentes-Fernández, R. (2009). INGENIAS Development Assisted with Model
Transformation By-Example: A Practical Case. In Y. Demazeau, J. Pavón, J. M. Corchado, & J. Bajo (Eds.), 7th
International Conference on Practical Applications of Agents and Multi-Agent Systems (PAAMS 2009) (pp. 40–49).
Berlin, Heidelberg: Springer Berlin Heidelberg. http://doi.org/10.1007/978-3-642-00487-2_5

Garro, A., & Russo, W. (2010). easyABMS: A domain-expert oriented methodology for agent-based modeling and
simulation. Simulation Modelling Practice and Theory, 18(10), 1453–1467.
http://doi.org/http://dx.doi.org/10.1016/j.simpat.2010.04.004

GEF (2016). Retrieved 4 December, 2016 from
https://eclipse.org/gef/

Generative Software Engineering (2016). Retrieved 29 December, 2016 from
http://documentation.genesez.org/en/ch01s01.html

Ghorbani, A. (2013). Structuring Socio-technical Complexity; Modelling Agent Systems using Institutional Analysis. TU
Delft, Delft University of Technology.

Ghorbani, A., Bots, P., Dignum, V., & Dijkema, G. (2013). MAIA: a framework for developing agent-based social
simulations. Journal of Artificial Societies and Social Simulation, 16(2), 9.

Ghorbani, A., Dijkema, G. P. J., Bots, P., Alderwereld, H., & Dignum, V. (2014). Model-driven agent-based simulation:
Procedural semantics of a MAIA model. Simulation Modelling Practice and Theory.
http://doi.org/10.1016/j.simpat.2014.07.009

Ghorbani, A., Dijkema, G. P. J., Bots, P., Alderwereld, H., & Dignum, V. (2014). Model-driven agent-based simulation:
Procedural semantics of a MAIA model. Simulation Modelling Practice and Theory, 49, 27–40.
http://doi.org/10.1016/j.simpat.2014.07.009

Glass for Europe (2016). Retrieved 2 October, 2016 from
http://www.glassforeurope.com/en/issues/faq.php

Guide, V. D. R., & Wassenhove, L. N. (2003). Business aspects of closed-loop supply chains (Vol. 2). Carnegie Mellon
University Press Pittsburgh, PA.

93

Sidney Niccolson
Thesis Research Project
February 6th, 2017
s1650548 (Leiden) - 4452909 (Delft)

H Gharavi, R. G. (2011). Smart Grid: The Electric Energy System of the Future, 99(6), 917–921.

Halog, A., & Manik, Y. (2011). Advancing integrated systems modelling framework for life cycle sustainability assessment.
Sustainability. http://doi.org/10.3390/su3020469

Haplopoda, D. (2001). Book reviews, (2000), 231–240. http://doi.org/10.1111/j.1468-2346.2012.01079.x

Heiskanen, E. (2002). The institutional logic of life cycle thinking. Journal of Cleaner Production, 10(5), 427–437.
http://doi.org/10.1016/S0959-6526(02)00014-8

Herring, H., & Roy, R. (2007). Technological innovation, energy efficient design and the rebound effect. Technovation,
27(4), 194–203. http://doi.org/10.1016/j.technovation.2006.11.004

Hertwich, E. G. (2005). Consumption and the rebound effect: An industrial ecology perspective. Journal of Industrial
Ecology, 9(1–2), 85–98. http://doi.org/10.1162/1088198054084635

Hobson, K. (2015). Closing the loop or squaring the circle? Locating generative spaces for the circular economy. Progress
in Human Geography, 0309132514566342-. http://doi.org/10.1177/0309132514566342

Huang, Y. (2013). Automated Simulation Model Generation.

Java Zone (2016). Retrieved 4 December, 2016 from
https://dzone.com/articles/real-time-charts-java-desktop

Kraines, S., & Wallace, D. (2006). Applying Agent-based Simulation in Industrial Ecology, 10(1), 15–18.

Le Page, C., Becu, N., Bommel, P., & Bousquet, F. (2012). Participatory Agent-Based Simulation for Renewable Resource
Management: The Role of the Cormas Simulation Platform to Nurture a Community of Practice. Journal of Artificial
Societies and Social Simulation, 15(1), 10. http://doi.org/10.18564/jasss.1928

Liang, Y. D. (2009). Introduction to Java programming: brief version. Pearson Prentice Hall.

Lombardi, D. R., & Laybourn, P. (2012). Redefining Industrial Symbiosis: Crossing Academic-Practitioner Boundaries.
Journal of Industrial Ecology, 16(1), 28–37. http://doi.org/10.1111/j.1530-9290.2011.00444.x

Milieu Centraal (2016). Retrieved 18 oktober, 2016 from
https://www.milieucentraal.nl/energie-besparen/snel-besparen/grip-op-je- energierekening/gemiddeld-

energieverbruik/

O’Rourke, D., Connelly, L., & Koshland, C. P. (1996). Industrial ecology: a critical review. International Journal of
Environment and Pollution, 6(2/3), 89–112. Retrieved from http://web.mit.edu/dorourke/www/PDF/IE.pdf

PSO Oklahoma (2016). Retrieved 3 October, 2016 from
https://www.psoklahoma.com/info/facts/Facts.aspx > derived calculation (18,916,965*100)/1,900,000

Richards, J. P. (2009). Mining, society, and a sustainable world. Mining, Society, and a Sustainable World.
http://doi.org/10.1007/978-3-642-01103-0

Software Sustainability Institute (2016). Retrieved 2 October, 2016 from https://www.software.ac.uk/resources/guides-
everything/software-evaluation-guide

94

Sidney Niccolson
Thesis Research Project
February 6th, 2017
s1650548 (Leiden) - 4452909 (Delft)

Stacke, F. (2008). Integrated pool / bilateral / reserve electricity market operation under pay-as-bid pricing, 1–7.

SunPower (2016). Retrieved 18 October, 2016 from
https://us.sunpower.com/home-solar/solar-cell-technology-solutions/winter-solar-panel- performance-and-

maintenance/

The Ellen MacArthur Foundation. (2012). Towards a Circular Economy - Economic and Business Rationale for an
Accelerated Transition. Greener Management International, 97. http://doi.org/2012-04-03

ucsusa (2016). Retrieved 19 October, 2016 from
http://www.ucsusa.org/clean_energy/our-energy-choices/how-is-electricity-measured.html#.WCrwyswrJEQ

Understand Solar (2016). Retrieved 30 November, 2016 from,
http://understandsolar.com/calculating-kilowatt-hours-solar-panels-produce/

van Dam, K. H., Nikolic, I., & Lukszo, Z. (2012). Agent-based modelling of socio-technical systems (Vol. 9). Springer
Science & Business Media.

VisualVM (2016). Retrieved 4 December, 2016 from
https://visualvm.github.io/

W3schools (2016). Retrieved 20 December, 2016 from
http://www.vogella.com/tutorials/EclipseRCP/article.html

Zest (2016). Retrieved 4 December, 2016 from
https://www.eclipse.org/gef/zest/

95

	Abstract
	Acknowledgements
	Abbreviations
	1 Introduction
	1.1 Thesis goal and scope
	1.2 Thesis outline

	2 Materials and Methods
	2.1 MAIA and ABMS
	2.1.1 Modeling and simulating socio-technical systems
	2.1.2 Conceptualization – how to go from theory to a description of a system's behavior?
	2.1.3 The MAIA meta-model

	2.2 Model Driven Software Development
	2.3 Java and object oriented programming
	2.4 Eclipse
	2.4.1 Eclipse Modeling Framework (EMF)
	2.4.2 Java Emitter Templates (JET)
	2.4.3 Eclipse Rich Client Platform (RCP)

	3 Model-driven software development for ABMS
	3.1 The application development approach
	3.2 Model development infrastructure – EMF processes
	3.3 Transformation platform infrastructure – JET processes

	4 AMIE - Agent-based Model-driven Integrated Environment
	4.1 Software Architecture
	4.2 Software functionality
	4.2.1 Procedural semantics
	4.2.2 Error handling

	5 Case study
	5.1 An introduction to the case study
	5.2 Conceptual MAIA-model development: MAIA structures applied
	5.3 Simulation implementation details
	5.4 Simulation results

	6 Tutorial for AMIE test-users
	7 Discussion and Conclusion
	7.1 Overview
	7.2 Research Outcomes
	7.2.1 Research question 2 [components]
	7.2.2 Research question 3 [connection of components - workflow]
	7.2.3 Research question 4 [conceptual models towards simulations]
	7.2.4 research question 1 [AMIE]

	7.3 Contribution of the thesis study
	7.3.1 Participatory ABMS
	7.3.2 Scientific contribution
	7.3.3 Societal contribution

	7.4 Reflection and future research
	7.4.1 Technical limitations
	7.4.2 Use of run-time visualizations
	7.4.3 Comprehensive software evaluation and validation
	7.4.4 More advanced GUI for model editing
	7.4.5 Code generation for other platforms
	7.4.6 Model extension proposals

	Glossary: An introduction to IE
	Triple Bottom Line and Sustainable Development
	Life Cycle Thinking
	Circular Economy and Closed-loop Supply Chains
	Industrial Symbiosis
	Rebound effect
	Ripple effect
	Relevance of Information Communication Technology (ICT) to IE

	Appendix 1: An overview of EMF
	Appendix 2: JET Syntax
	Appendix 3: Eclipse RCP
	Appendix 4: MAIA Concepts & ABMS
	Appendix 5: Platform Implementations of MAIA Concepts
	Appendix 6: Development MAIA-based RCP
	Common errors:
	Creation of wizards and sending additional files:
	Adding files to root directory of RCP app
	Create output for potential error messages and error prevention on Windows
	Default plotting mechanism library
	Important Java classes

	Appendix 7: Entity actions in detail
	An introduction to entity actions
	Scenario 1 Entity Actions Explained
	Scenario 2 Entity Actions Explained
	Scenario 3 Entity Actions Explained

	8 References

